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Abstract

This doctoral thesis deals with a new approach for the appearance grading
of sawn timber adapted to the requirements of modern sawmilling industries
and timber market situations. Appearance grading of sawn timber allows
wood products to be made with a specific visual style due to wood features
such as knots. Identifying and grading sawn timber by its visual style is
a holistic-subjective task that is inherently suitable for humans. However,
with the ever-increasing demand for a faster and more consistent grading
operation, humans have been replaced by automatic systems during the
past few decades. However, the human perception of the appearance of
sawn timber is not something easily defined coherently and concisely for use
in automatic systems, resulting in automatic systems struggling to perform
appearance grading using conventional rule-based grading. As shown in
this thesis, machine-learning methods can be used to teach an automatic
system to perform holistic-subjective grading in a way that emulates manual
grading while still performing the fast and consistent grading associated with
automatic systems. This thesis introduced machine learning for product-
adapted appearance grading of sawn timber and studied the use of machine
learning to appearance grade sawn timber according to standardised quality
grades, using an X-ray computed tomography (CT) scanner and a camera-
based board scanner.

In the studies presented in this thesis, measurement data from the CT scan-
ner and the board scanner was used to create a set of variables only regarding
knots. The variable sets and the grades of the sawn timber were modelled by
projection to latent structures (PLS) models. The grade of the sawn timber
was determined in three ways; firstly, manual grading according to standard-
ised quality grades; secondly, called the product grade, the sawn timber was
delivered to a wall-panelling customer, and the grade of the sawn timber was
determined by the quality yield at the customer; and thirdly, called the image
grade, images were extracted from the board scanner and used to estimate
the quality yield of the wall-panelling customer manually. The grading in
each scanning system was performed using a machine-learning method and
a conventional rule-based approach, and their performances were compared.

Seven data sets were collected in the studies presented in this thesis, each
with a combination of variable sets from the scanners and quality grades as
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described above. In each study, one or more PLS models were trained to
model the relationship between a variable set and a quality grade and used
to predict the quality of the sawn timber. A PLS model predicts a score for
each piece of sawn timber, and if that score passes a classification threshold,
the model assigns a quality grade. This classification threshold could be
tuned manually to introduce a bias in the model and thereby change the
sorting outcome.

When performing standardised appearance grading of dried sawn timber,
both a PLS model and rule-based grading achieved about 80% grading
accuracy, while a manual grader agreed to 95% with the PLS model and
to 81% with the rule-based grading in a verification test. Furthermore,
when performing customer-adapted grading of the standardised grades, a
PLS model managed an 84% grading accuracy compared to 64% of the
rule-based approach. These results show how a conventional rule-based ap-
proach struggled with performing customer-adapted grading compared to a
PLS model. When performing standardised grading, however, both meth-
ods achieved similar grading accuracy, but only the grading performed by
the PLS model could not be significantly distinguished from the targeted
standardised grades.

Using a PLS model to perform product-adapted grading of dried sawn tim-
ber resulted in a grading accuracy of about 70%-80% for different scenarios.
These gradings resulted in a quality yield, pass or fail, of about 80% for
the wall-panelling customer. According to the customer, rule-based grad-
ing did not yield impressive product-adapted results, and no metric was
given. Furthermore, this thesis showed that the image grade was as useful
as the product grade for training the PLS models, which greatly simplifies
the logistical process of creating a data set for training a product-adapted
machine-learning model. Had a traceability method been used to collect
the data from the scanners automatically, the image grade would allow for
completely software-based data collection, which is very much in line with
the industry 4.0 concept.

A CT scanner enables the appearance grading of virtual sawn timber in the
3D images of the scanned logs, which allows the logs to be sawn for maxi-
mum value or quality yield. The CT scanner was made to perform a primary
product-adapted grading using either a PLS model or a rule-based approach.
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In addition to this primary grading, the CT scanner and board scanner were
programmed to perform a small secondary grading by limiting a small set of
measurements that the CT scanner could not sufficiently account for. For
example, large pith deviations were limited in the CT scanner, and rotten
knots were forbidden by the board scanner, as these measurements were
associated with a high risk of resulting in poor quality wall panels for the
customer. With this setup, a dataset of 300 pieces of virtual sawn timber
was studied. Using rule-based primary grading, the sawmill delivered about
200 pieces of sawn timber with a product yield of 77% for the customer,
after the board scanner rejected 28 pieces (12%). Then, by controlling the
classification threshold of a PLS model to make the primary grading very
strict, meaning that the log was sawn to only yield very likely high-quality
pieces of sawn timber, the sawmill could deliver 114 pieces of sawn timber
with a product yield of 90%, after the board scanner rejected 9 pieces (7%).
These results show that a PLS model achieved higher grading accuracy and
higher quality yield than a rule-based approach. Furthermore, the classifica-
tion threshold of the PLS model allows for easy and intuitive control over the
sorting outcome, something that the rule-based approach does not support.

This thesis showed that a PLS-based machine-learning model could be used
to perform holistic-subjective appearance grading by both a CT scanner and
a board scanner, where a rule-based approach struggled in all but the most
familiar case of standardised grading. Once a framework for a machine-
learning method such as PLS has been implemented, this thesis showed the
ease of customising and fine-tuning the grading performance to be in line
with customers needs. A customer or product adaptation could conceivably
be initiated and finalised completely in software by automatically collecting
the data using a traceability method, collecting the reference grades needed
for training by grading images of sawn timber, and using the intuitive clas-
sification threshold to fine-tune the sorting outcome.
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CHAPTER 1

Introduction

Wood is a beautiful and a whimsical material



2 INTRODUCTION

1.1 Thesis Overview

1.1.1 Background

The business of any sawmill includes refining round timber into sawn prod-
ucts such as sawn timber (planks and boards) and by-products. This is a
complex task as the stems or logs come in a large variety of shapes and
sizes, and their inherent features and composition decides the mechanical
and chemical properties of the sawn products. Furthermore, customers of
sawn timber have different needs depending on their businesses, for example,
construction companies or furniture makers have wildly different require-
ments. Due to this complexity, most sawmills specialise in processing one or
a few wood species, thereby greatly limiting the variety of both the incom-
ing logs and the outgoing sawn timber, which limits the variety of suitable
customers. On the other hand, such specialisations allow sawmills to use
specialised machines and greatly increase production capacity.

Many sawmills in the Nordic countries have specialised to process the logs
of the locally common softwoods species Scots pine (Pinus sylvestris L.)
and Norway spruce (Picea abies L. Karst.) into sawn timber. Only in the
southern regions of Sweden are small volumes of hardwoods sawn. The sawn
timber is graded according to either strength characteristics or appearance
according to standards after drying at a dry-sorting station before delivery
to customers. This way, the customers are familiar with the sawn timber
available for purchase from different sawmills. Strength graded sawn timber
is only graded according to standards such that, for example, construction
companies reliably can follow safety protocols. Appearance grading of sawn
timber, on the other hand, is commonly graded according to some customer-
specific criteria as different customers are trying to produce different wooden
products with distinct appearance styles. Visual strength grading and ap-
pearance grading is commonly performed using rule-based grading, which
limits what is allowed in a certain grade for relevant measurements, for ex-
ample cracks, or the size of knots.

Some modern sawmills scan the logs using an X-ray computed tomography
(CT) scanner to detect and measure features inside the logs before sawing.
CT-scanning could allow for appearance grading of virtual sawn timber fitted
inside the 3D CT image of a log and thereby for sawing optimisations based
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on this virtual estimation of the resulting sawn timber. In addition, grading
(virtual) sawn timber prior to drying allows for control over what sawn
timber is dried to customer-specific requirements. Such control could reduce
the amount of sawn timber dried according to a customer’s specifications
and rejected at the dry-sorting station.

An overview of the sawmills collaborating with this thesis is shown in Fig-
ure 1.1, whose letters will be referenced throughout this thesis in soft paren-
theses. This figure will be repeated and "evolve” as the thesis progresses and
the captions build upon previous captions.

R B
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Figure 1.1: A modern sawmill’s refinement process of round timber to sawn
timber. R, round timber. C, CT-scanning system. S, sawing of the logs.
D, drying of the sawn timber. B, camera-based board scanner dry-sorting
system.

1.1.2 Motives for a new Grading Approach

Automatic appearance grading of sawn timber is difficult to customise for
individual customers or products using today’s common rule-based approach
in two major ways. Firstly, rule-based appearance grading requires an in-
tricate and coherent description of the desired sorting outcome in a way
that is not natural to holistic-subjective appearance grading of sawn timber.
Secondly, rule-based grading defines limits on a large number of individ-
ual features, which makes customisation troublesome. These problems can
lead to a mismatch between customer requirements and sorting outcome,
or prohibit customer-adapted grading entirely. Such a mismatch can lead
to sawmills delivering, and customers processing, sawn timber not suitable
for the end product, which indicates the need for a new method of ap-
pearance grading sawn timber that is easy to customise. For example, the
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collaborating sawmill in this thesis is using a customer-adapted version of
standardised grading rules to better suit the needs of a particular customer
producing wall panels. Without the customer-adapted grade, the customer
might have been forced to purchase a more expensive sawn timber product
to meet their product’s quality requirements. The customer-adapted grad-
ing enables the customer to buy a less expensive sawn timber product with
some modifications to the quality grade. Furthermore, if the sawmill can
make such modifications to increase the value of the less expensive product,
it would be a win-win situation for the sawmill and the customer. Addi-
tionally, the benefits of customer-adapted grading could be increased yields
of the intended product by the customer, and therefore less volume of sawn
timber unnecessarily delivered from the sawmill that could have been sold
to a different customer. The benefits of customer-adapted grading could be
taken one step further, as CT-scanning (C) allows for control over sawing
and drying, which indicates that it is possible to avoid unnecessary drying of
sawn timber by the same reasoning. Customer-adapted grading is partially
achieved today using a customer-adapted set of rules at the dry-sorting sta-
tion (B), but neither party is completely satisfied with the sorting outcome,
due to the coherency and conciseness difficulties of customising rule-based
grading.

1.1.3 Objective and Research Question
Objective:

Make the scanning systems in sawmills able to mimic the appearance grading
performed by an experienced manual grader, but faster and more reliably, in
a way that is easy to customise and easy to fine-tune.

Research Question:

Can a new machine-learning approach for appearance grading of sawn tim-
ber be designed to allow easy customer adaptability with a high agreement
with customer requirements?

The goal of the works presented in the this thesis is to appearance grade
sawn timber based on its knot structure in a way that is easily customisable
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for different customers. The core idea of implementing machine learning
in sawmills for sorting sawn timber comes from this definition of machine
learning — the ability for computer systems to learn a desirable behaviour
without being explicitly programmed how to. For example, a customer is
experienced with the type of sawn timber they would like to purchase and
is good at appearance grading sawn timber as ’buy’ or not buy’. The
customer is using their experience to demonstrate their preferences of the
appearance of sawn timber by grading to their needs. It is this skill of grading
sawn timber that the this thesis aims to introduce to scanning systems in
sawmills by introducing machine learning in a way that is easily customisable
for different customers and achieves high grading accuracy.

This thesis introduces a machine-learning method that enables holistic-subjective
grading of sawn timber to simplify the customisation process for individual
products and customers (Figure 1.2). By using such a method, the utilisa-
tion of the forest’s natural resources can be increased — sawmills can increase
their profitability by only providing suitable material to the customer, and
customers can increase their production capacity by only processing suitable
material. The works presented in this thesis could be used to set in motion

a transition to machine learning-based appearance grading of sawn timber
that is beneficial for both customers and sawmills.

R B
555 [; Delivery

.-> %"&_’m-’ to

customer
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Figure 1.2: This thesis aims to introduce machine-learning models, M, into
a modern sawmill’s refinement process.
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1.1.4 Limitations

Discolourations, rot, or cracks, for example, are arguably more important
defects than knots for appearance graded sawn timber, but such defects are
simpler to deal with in the sense that they are usually either allowed or not.
For this reason, this thesis focuses on appearance grading the knot structure
of sawn timber and ignores other defects.

The only material investigated was the centre yield of Scots pine round
timber in industrial conditions. No information was gathered from the stands
used during the felling of the trees or the bucking of the round timber. All
data collection started after pre-sorting the logs as suitable for the wall-
panelling customer or grading process, which was done according to standard
practices by the sawmill.

1.2 Appearance Grading of Sawn Timber

1.2.1 Aesthetics of Wood Products

Wood products have an appearance we humans find naturally attractive.
Its use is common in all parts of the world, particularly in the Scandina-
vian communities, and in our homes — from floor to ceiling. In part, the
large variation and heterogeneity make the wooden material so intriguing to
humans. The large number of tree species that exists comes with a large vari-
ety of appearances with different colours, wood grain appearances, and knot
structures — each contributing to the unique appearance of wood products.
While the colour of the wood and the texture represents important appear-
ance aspects of, for example, furniture, which rarely show visible knots, the
knot structure (or lack thereof) is commonly the most important aspect for
wood products like flooring and wall cladding, where the natural appear-
ance is often highlighted. For such products, the heterogeneous appearance
of wood is mainly due to the knot structure, meaning there are often many
knots with a variety of shapes and sizes on the wooden surface. If knots
are not present, humans still often desire a heterogeneous appearance of, for
example, a wooden floor and choose something like a fish-bone pattern. On
knot-free surfaces, other features appear more visible to the human eye. In
contrast, a homogeneous appearance of these surfaces would be, for example,
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a painted wall or wall-to-wall carpet. The knot structure of wooden surfaces
is important for how humans subjectively interpret the appearance of the
wood (Broman 2000), which is why most grading criteria of appearance
graded sawn timber are regarding knots.

Humans subjectively perceive knots not only by their individual size and
appearance but as a collective of many knots spread across the entire surface.
This thesis, and some of its references, refers to this kind of perception as
holistic and subjective and is inherent to manual appearance grading of sawn
timber. The holistic-subjective perception of knots can be understood by
pondering what makes, for example, a wall covered by wall panels constitute
a particular style or not and, thereby, be subjectively beautiful. Note that
since the appearance of sawn timber, and by extension each wall panel, has
to be graded piece by piece at the sawmill, one should consider each wall
panel individually and imagine the wall as being covered by similar pieces.
Some example wooden surfaces can be found in Broman (2000). First, a
wall covered with wall panels with no knots at all would certainly constitute
a particular style. However, a wall with only one knot, regardless of size or
appearance, would be frowned upon, and the single knot would be perceived
as a defect and ruin the otherwise clean, homogeneous style. If each wall
panel had several knots of the same size, and the wall had a single knot
that was much larger, that knot would also be perceived as a defect, again
ruining the otherwise homogeneous style. Lastly, if the wall panels each had
several knots of a wide range of sizes, no knot would be considered too large
or too small, and the wall would again have a homogeneous style due to
the continuous "messy” knot structure of the wall. By these arguments, it is
not inherently the size of each knot that ruins’ a particular style or not, but
rather the relative size of the knot compared to the holistic appearance of the
wall and each wall panel. This illustration with a wall example only covers
the size of knots, and the difficulties of appearance grading sawn timber will
only become more difficult as more properties of knots are considered, such
as shape and colour.

This holistic-subjective perception of wooden surfaces, particularly the abil-
ity to grade sawn timber as part of one appearance grade or the other, is
the human skill this thesis aims to model using machine learning — this will
be considered in section 1.3.
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1.2.2 Appearance Grading

Appearance grading (classification) of sawn timber is a subjective process
and, as discussed by Broman (2000), is no easy task. For example, in the
study by Gronlund (1995), only 57% of 2045 pieces of sawn timber were given
the same grade by two manual graders implementing rule-based grading,
proving that there is an inconsistency between humans performing the same
grading task. Since then, manual graders has been replaced by automatic
systems in most sawmills. Such automatic grading systems are often camera-
based and perform the final grading of the sawn and dried timber before
delivery to a customer. The grading could be used to appearance grade
dried sawn timber by a set of rules automatically. This automation allows
for higher throughput at the grading station and higher value yield than
manual grading (Lycken 2006).

By today’s standards, conventional image processing, manipulation, and seg-
mentation techniques have long been used to perform automatic grading.
Such techniques have matured over a long period of time and have become
the well-functioning systems used today (see section 1.2.3). These algorithms
are used in the automatic grading systems studied in this thesis to detect
and measure knots and other features and are used as the basis for machine
learning implementation.

1.2.3 Rule-based Appearance Grading

In the Nordic countries, the Nordic timber grading rules (NTGR, Swedish
Sawmill Managers Association (1994)) are often used to appearance grade
Scots pine and Norway spruce sawn timber (Figures 1.3 and 1.4), or similarly
by the EN 1611-1 standard (CEN 1999). The idea behind the NTGR was to
standardise automatic appearance grading of sawn timber in a way that is
in line with manual grading (see older manual grading rules such as Swedish
Sawmill Managers Association (1982)), aiming to define the manual grades
of sawn timber by a set of rules. The grades of sawn timber were carefully
described by rules that define the limits of what features are allowed for
each of the standardised grades. The rules govern the size, shape, status,
position, number, and proximity to other features (clusters), often in relation
to the dimensions of the sawn timber and measured on the worst metre of
the piece. Different combinations of feature properties can be governed by



1.2. APPEARANCE GRADING OF SAWN TIMBER 9

I

I

| ;
’ s " A : 11

i 4 By ;. g -V

o = v
o . AV4
° 9

o

Figure 1.3: Example images of six standard NTGR grades of dimensions
50 x 150 mm. From www.traguiden.se
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Figure 1.4: Today’s use of rule-based appearance grading of sawn timber.

separate rules; for example, for a particular grade, the maximum allowed
size of a knot is different for each of the faces of the sawn timber — inner
face, outer face, or edges. The benefit of rule-based automatic grading is
that it is objective, which means that a grade defined by a set of rules is the
same no matter which system was used to grade the sawn timber, with some
degree of measurement error. Therefore, rule-based grading is used as a
common way to appearance grade sawn timber as standardised grades, such
that the customers know what they are buying, indifferent of the sawmill.
Nevertheless, each sawmill usually customises the standardised rules to some
extent to better suit their material and their customers.
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Lycken (2017) investigated rule-based automatic dry-sorting in 15 sawmills,
using 4063 pieces of manually graded sawn timber from Scots pine and Nor-
way spruce, and using two different grading standards to grade sawn timber
as standardised grades. Each sawmill implemented its own customised sets
of rules suitable for the material common to each respective sawmill, thereby
allowing the performance of each sawmill to be measured according to their
everyday grading operations. The study concluded that a sawmill’s dry-
sorting station operating under good conditions should be able to maintain
a value yield of 98%, a quality yield of 95%, of the already sawn and dried
timber, and that knots, in particular the status of the knots, was the reason
for 44% of misclassifications (53% for pine and 32% for spruce). Further-
more, even though each sawmill got to calibrate and fine-tune their rules
before the tests, some rules were observed to not be optimal in several cases
and that some features were not assessed as intended, leading to acceptable
but unexpected results. Nevertheless, these results show the strengths of
rule-based grading of standardised grades that the sawmills are accustomed
to working with.

There are, however, a few problems with rule-based appearance grading of
sawn timber. Existing rule-based grades of sawn timber might not fully
reflect the customer’s needs, and some pieces of sawn timber can abide by
the NTGR but can be perceived not to by humans. For example, if more
than the usual number of knots on a piece of sawn timber are close to the
maximum allowed size, the piece passes the quality rules but would appear
excessively knotty to a human who might assign the piece a different grade.
Therefore, customer-specific grades are sometimes desired, and a customer-
specific set of rules needs to be defined, which need to be coherent and
deliberate to result in a concise grading. Making a new set of rules, or
customising existing rules, has two main problems (Lycken and Oja 2006),
meaning the process is not easily made:

e coherent — it is difficult for a customer to describe their subjective view
of the desired appearance of the sawn timber in a way that can easily
be defined in objective grading rules, and

e concise — the number of variables that can be controlled to specify a
grade is often more than enough to complicate customisation.
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1.3 Machine Learning

Conventionally, programming problems are solved by algorithms — step by
step instructions designed by programmers to achieve the desired behaviour.
For many problems, algorithms are a reliable, interpretable, and relatively
simple solution to implement. Some examples of tasks successfully solved by
such algorithms are web pages and online shops, banking transactions, and
physics simulations. However, consider the programming problem of writing
a program that counts the number of cats in any image. Solving this problem
by writing an algorithm is unfeasible, even though humans have no trouble
counting the number of cats in an image. Humans can easily define the
input data, images of cats, and the output data, the number of cats in a
given image, but humans cannot translate the skill of counting cats into
an algorithm. Enter, machine learning — the ability for computer systems
to learn a desirable behaviour without being explicitly programmed. To
implement machine learning is to specify the desired behaviour of a program
by defining the input and the output data and let an optimisation process
compute the algorithm that emulates the desired behaviour. For example,
in the context of neural networks, humans specify the desirable behaviour by
labelling images of cats with the number of cats in the image and define the
architecture of the neural network, after which stochastic gradient descent
can be used to compute the algorithm, the neural network weights, that
emulates the behaviour of counting the number of cats in the image. The
main strength of implementing machine learning for these tasks is to allow
humans to perform the task that humans are good at in this example —
counting cats — and let the machine-learning algorithms translate this skill
into a program. This paragraph was inspired by the white paper by Karpathy
(2017), which presents an extended discussion on this matter.

Machine learning has been used in the wood industry to help improve var-
ious tasks, see section 1.3.2. A particular interest in using neural networks
(NN) and other learning approaches rose in popularity during the 1990s
with varying levels of usability. As the machine-learning community ma-
tured alongside rapidly improving hardware and computational power, the
possibility to effectively implement machine learning in the wood industry
increased dramatically during the 2000s and 2010s.
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1.3.1 Artificial Intelligence vs Machine Learning vs
Statistics

The distinction between artificial intelligence (AI), machine learning, and
statistics is not always apparent. For example, it is accepted that neural
networks fall under the category of machine learning and that regression
techniques fall under the category of statistics. However, both of these
examples can be used to estimate an outcome from a new data point. More-
over, each of these methods can be made noise-resistant, making it seem
that these models could, at least in theory, be equally capable of perform-
ing a task. Furthermore, as artificial intelligence is usually referred to as
an agent that can act upon its environment based on the environment, one
could argue that a linear regression model and an if-statement making some
decision is enough to constitute an Al. To this point, there is a large overlap
of words like AI, machine learning, and statistics, and any further debate
to distinguish the difference between these words is futile and unwarranted
within this thesis.

1.3.2 Applications of Machine Learning in the Wood
Industry

There are several applications of machine learning in the wood industry
and many more studies in the wood processing research sector. As this
thesis focuses on appearance grading, this section only briefly introduces
other machine-learning studies not related to this topic. Some studies of
particular interest to this thesis are the works related to Giudiceandrea et
al. (2011), Ursella et al. (2018) and Ursella (2021), that developed a CT-
scanning system that used convolutional neural networks (CNNs) to detect
knots in 3D CT-images of logs. Using CNNs, Ursella (2021) implemented
a computationally efficient knot detection methodology that measured and
detected the size and status of knots inside CT-scanned logs. Of particular
importance was detecting of the knot status, as this is critical for many
grading criteria regarding sawn timber. The CNN method of (Ursella 2021)
outperformed older, algorithmic, knot measurement and status detection
techniques by Oja (2000) and Johansson et al. (2013). The detected knots
could be used to optimise to sawing of the logs according to value yield.
These studies show the high fidelity information available using CT scanning,
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even before sawing the log. This type of information can greatly increase
the value yield from conventional sawing practices like the so-called horns-
down sawing (Fredriksson 2014), and the information can also be used for
appearance grading of sawn timber, which will be covered later in this thesis.

Some interesting machine-learning studies are as follows, showcasing some of
the progress made in the research area during recent times. Hagman (1996)
performed extensive investigations on the reflections of wood, presenting a
variety of techniques for a variety of tasks, including machine-learning ap-
proaches using multivariate image analysis. Understanding the reflective
behaviour of wood and wood features is fundamental to developing and
interpreting machine-learning techniques based on optical systems, partic-
ularly to understand for what tasks machine learning is suitable compared
to using traditional techniques like image filtering and image manipulation
algorithms. Gu et al. (2010) classified images of knots of different status
with very high average accuracy (96.5%) and low false-positive rate (2.25%)
in a very rigorous and detailed study using simple features and support vec-
tor machines (SVM). The study showed that it is possible to use machine
learning for sub-tasks like knot classification, which is very important for sub-
sequent processing or grading that relies on an accurate measurement of the
knot structure to give accurate results. Rudakov et al. (2018) used a CNN to
perform image segmentation of sawn timber to identify regions that suffered
mechanical damage from feed rollers. Such mechanical damage is difficult
for visual scanners to interpret as they are not expected and could lead to
misinterpretations by, for example, a knot detection algorithm. Zolotarev
et al. (2019) tested a few different CNN architectures to trace round timber
sawn to boards by using a laser scanner to measure the surface of the logs
and train a CNN to identify the boards sawn from that log. The CNNs
were trained using CT data, and this study showed the potential of using a
CT scanner to train a NN but then only require a surface laser scanner to
be able to use the pre-trained NN. The approach indicated the possibility
of investing in expensive machines, such as CT scanning systems with rich
3D information of the insides of a log, in one location and using derived
machine-learning models in other locations using simpler and less expensive
systems. Hu et al. (2019) used transfer learning of CNNs to classify a variety
of sawn-timber defects and features with high accuracy. In particular, this
study showed how techniques like transfer learning can be used to imple-
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ment machine-learning techniques with limited sized data sets — a common
problem for machine-learning studies. Batrakhanov (2021) used a genera-
tive adversarial network (GAN) to simulate sawing of logs and produce RGB
images of the sawn timber from surface laser scanning of the logs. Such a
technique could, for example, give a sawmill an estimate of sawing outcome
to optimise sawing or calibrate the sawing equipment. Alternatively, such
simulated sawing results could potentially be used to help visualise simulated
results using the Swedish Pine Stem Bank (Grundberg et al. 1995), which
has many studies regarding CT-scanning of logs and simulated sawing based
upon it.

The few studies cited above shows only a small selection of the available
machine learning studies in research areas not directly related to appear-
ance grading of sawn timber. These studies show that machine learning is
no longer a novel research area only for computer scientists studying bench-
marking data sets but is an incredibly versatile skill that needs to be a part
of a variety of research subject departments.

1.3.3 Appearance Grading of Sawn Timber using
Machine Learning

The topic of appearance grading of sawn timber using machine learning is
not covered to a great extent in the literature, and as such, this section is
similar to a state of the arts on this narrow field of research. The existing
literature introduced machine learning-based appearance grading of sawn
timber which allowed for the "software 2.0” methodology described in sec-
tion 1.3, meaning to manually define the desired grades of a data set and let
a machine-learning model learn the skill of grading the sawn timber accord-
ingly. The literature also introduces virtual grading of sawn timber, which
means the grading of sawn timber either by simulation or, more commonly,
the grading of sawn timber as they are simulated to appear inside the 3D
image of a CT-scanned log. Specifically, the literature, as well as this thesis,
used the machine-learning method projection to latent structures, also called
partial least squares regression (PLS, Wold et al. (2001)). This particular
technique is commonly used in the literature due to the possibility to per-
form classification using highly correlated variables with potentially a lot of
noise using a variance-maximising technique (Eriksson et al. 2013). Further-
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more, the fundamental concepts of PLS are derived from the common data
analysis toolbox related to principal component analysis (PCA). As such,
this family of machine learning and data analysis tools are easy to imple-
ment and makes the machine-learning models easily interpretable (Eriksson
et al. 2013). Other machine-learning methods could be considered instead
of PLS, in particular NNs. However, with the already established merits of
PLS, and the extra complexity of implementing and interpreting NN models,
such models were deemed over-complicated at this early stage of develop-
ing machine-learning models for appearance grading. Likewise, methods like
logistic regression, k-means-clustering, or support-vector-machines (SVMs),
were not chosen as these methods have trouble dealing with either highly cor-
related variables, outliers, or the high dimensionality of appearance grading
sawn timber.

Nordmark and Oja (2004) studied the use of an optical 3D log scanner,
and Oja et al. (2004) studied a two-axis X-ray log scanner to predict the
potential quality of logs or the potential value of the logs depending on the
applied sawing pattern, respectively, using PLS models. This was achieved
with promising results based on variables regarding log characteristics, which
were different depending on the scanning equipment used for each model.
By modelling the value of the logs before sawing for different sawing patterns
and similarly for positioning (Fredriksson 2014), the value yield of each log
can be increased. In particular, the scanning systems used in the studies by
Oja et al. (2004) and Nordmark and Oja (2004) are potential candidates for
machine-learning methods. The systems both provide detailed information
about the outer shape of the logs and the discrete X-ray log scanner can
provide some information about the internal knot structure, such as knot
whorls. Such information can be used to geometrically fit a sawing pattern
to the log, but with limited information about the knot structure of the
resulting sawn timber. As such, it is hard to define rules, as for rule-based
dry-sorting of sawn timber, regarding how each log should be sawn. Instead,
a machine-learning method, such as PLS, can be used to model the potential

value of the log for different sawing patterns, as shown by Nordmark and
Oja (2004) and Oja et al. (2004).

The appearance of the knot structure of sawn timber, or lack thereof, was
studied by Broman (2000) who investigated the appearance of Scots pine
sawn timber and how different characteristics (variables) correlated with cus-
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tomers’ preferences, and what kind of appearance is considered desirable by
the customers and why — what variables are important. By designing ques-
tionnaires regarding the appearance of wood products, the studies included
in this thesis used both PCA and PLS to conclude that the impressions of
the whole wooden surface was more important than the details — highlighting
the importance of holistic-subjective appearance grading of sawn timber.

Breinig et al. (2015b) performed cluster analysis and classification of floor-
boards according to their holistic-subjective visual characteristics, allow-
ing the grouping of floorboards into cluster grades of similar homogeneous
appearance, with distinct differences between clusters. By dividing CT-
scanned logs into three sections by the growth-ring orientation of the re-
sulting sawn timber, three separate cluster analyses were performed on 300
floorboards. First, every knot on 300 RGB images of the floorboards was
meticulously measured and classified as sound and dead, after which 29 knot
variables and one pith-length variable were calculated. Then, based on these
variables from 150 floorboards, the cluster analyses were tested for predic-
tive classification capabilities on the remaining 150 floorboards, where some
log sections showed acceptable results. Thus, this study showed indicative
results for the potential to subjectively and holistically classifying entire
faces of floorboards, and thereby sawn timber, by using a set of descriptive
feature variables. Furthermore, the fact that the predictions were in part
successful showed that enough information regarding the appearance of the
floorboards was available in the 30 variables to have a clustering algorithm
learn the differences between the holistic-subjective cluster grades.

In a continuation study to Breinig et al. (2015b), the study presented in
Breinig et al. (2015a) used simulated sawing of CT-scanned logs to optimise
the rotational angle of the logs to yield the most number of floorboards of
cluster-grades defined as in the previous study. Using the same clustering
technique as in the previous study, each cluster in each log section rep-
resented a cluster grade for classification using PLS models based on the
CT-scanners measurements. Using several PLS models, the rotation of the
log was optimised to result in the most number of floorboards of these clus-
ter grades. This technique showed the PLS models managed to appearance
grade the virtual sawn timber in a satisfactory way that showed a homoge-
neous appearance of the boards within a grade and clear distinctness between
the grades. This study showed the potential to subjectively and holistically
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appearance grade virtual sawn timber inside CT-scanned logs before the
sawing of the log. Fredriksson (2014) showed that the log’s positioning is
important for the value and volume yield of sawn timber, and now the works
by Breinig et al. (2015a,b) studies showed that similar ideas could be used
for specific products.

Using strict definitions of appearance grades, as opposed to Breinig et al.
(2015a,b), and Broman (2000), PLS was used by Lycken and Oja (2006) to
appearance grade sawn timber by quality grades according to rules based
on the NTGR. The study implemented PLS using a similar set of variables
to Breinig et al. (2015b) on each face of the sawn timber, mostly regarding
knots, that was based on manual measurements from images of the sawn
timber. This study showed the potential of using PLS models to appearance
grade sawn timber in line with strictly defined grades and agreed to 81%
with manual grading according to the NTGR. As the grading performed by
a PLS model resembles manual grading in the sense that there is no strict
limit of, for example, the maximum size of knots, it is expected that there
would be some visual difference of a grade, depending on what method was
used to perform the grading. However, no such study has been performed.

Berglund et al. (2015), a continuation of Lycken and Oja (2006), studied a
customer-adapted sorting comparing the performance of a rule-based grad-
ing and a PLS-based grading methodology. A much larger set of knot vari-
ables were created by repeating 56 knot variables on each face of the sawn
timber and in several different sections of the sawn timber, resulting in a
total of 1566 highly correlated variables. This time, the variables’ basis
was measurement performed by a camera-based automatic grading system
used for rule-based dry-sorting, which introduced measurement errors. The
study concluded that the PLS-based grading performed better than the rule-
based grading performing the same task compared to a manually defined
true grade. However, the rules, which was the collaborating sawmill’s active
sorting rules for this large customer, suffered from the two problems of co-
herency and conciseness when customising a rule-based grade, as described
in section 1.2.3. If the rule-based grading would have been replaced by the
PLS-based grading, this study showed how the difficulties of customising
rules for a particular customer could be replaced with one task of labelling
a data set. This labelling task greatly simplified the process of creating new
customised quality grades and ties back to the discussion in section 1.3 re-
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garding how humans should be allowed to perform the task they are good
at — grading sawn timber.

The choice of variables in Broman (2000), Lycken and Oja (2006), Berglund
et al. (2015), and Breinig et al. (2015a,b), and in the studies presented in
this thesis, is the seed for these kinds of studies and therefore needs to be
chosen deliberately. However, why some variables are included and others
are not is difficult to answer. The set of variables need to be comprehensive
enough such that the necessary information to perform the task at hand is
somehow available to the machine-learning model. This problem of defining
a set of variables relates to the discussion in section 1.3 — humans have a
difficult time intuitively understanding how a single variable is, or is not,
important for the task at hand and to what degree. It is even more so when
each variable is considered in the context of the selected machine-learning
method with its particular strengths and weaknesses. Therefore, the task
of defining a set of variables is not an easy task. It is, however, possible
to create a set of variables that allows for clustering and grading of the
appearance of sawn timber, as shown by the references above.

The choice of reference grades used in the aforementioned studies are in con-
trast with each other. Breinig et al. (2015a,b) and Broman (2000) used a
subjective interpretation of the appearance of sawn timber to perform homo-
geneous appearance clustering while Lycken and Oja (2006) and Berglund et
al. (2015) used a rule-based standardised grade or a customer-adapted rule-
based grade as reference. These studies show the potential to appearance
grade sawn timber according to conceptually different grades. As a continu-
ation of these studies, this thesis will focus on product-adapted appearance
grading of Scots pine sawn timber.



CHAPTER 2
The Machine-Learning Method

Machine learning is “software 2.0”
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To achieve the objective of sawmill scanning systems that understands the
customers’ preferences of sawn timber, this thesis implemented a machine-
learning method. Implementing a machine-learning method consisted of
collecting data sets with an input, X, and an output, Y, and the relationship
(transformation) between the two was modelled using machine learning. To
show the feasibility and benefits of using machine learning to holistically and
subjectively appearance grade sawn timber, this thesis studied a modern
sawmill that delivers sawn timber to a customer producing interior wall
panels.

Here follows an overview of the Publications included in this thesis and the
associated data sets. Two scanning systems were investigated — a C'T scan-
ning system and a board scanning system (sections 2.5.1 and 2.5.2). These
scanning systems measure the knot structure of the sawn timber at different
stages of the sawmill’s refinement process. Based on their measurements,
each system used a MATLAB® (The MathWorks, Inc. 2021a) script to com-
pute a set of statistical variables, X, that described the knot structure of
the sawn timber (section 2.7.1). By tracking each piece of sawn timber from
the point of being scanned by either system, to the point of becoming a wall
panelling product, the final product grade, Y, could be matched with the
variables calculated from the scanners, X. A machine-learning model could
then be trained for each system (or, in theory, both simultaneously), giving
the scanners the ability to appearance grade sawn timber as suitable or not
for the final wall panelling product. Furthermore, instead of using the final
product grade, which requires the processing of unsorted sawn timber, the
automatically captured images from the board scanner were used as the ba-
sis for appearance grading. The images were carefully inspected and graded,
similarly to traditional manual grading, as being suitable or not for a par-
ticular wall panelling product. Such a grading process requires an intricate
understanding of the customers’ requirements and the production process
of the final product. This so-called image grade of the sawn timber was
investigated as a substitute for the product grade but with a much simpler
logistical process of collecting the reference grade, Y.

In parallel to the studies regarding the wall-panelling customer (Publications
I1, I11, V, VI, and VII) two studies were conducted on two separate unrelated,
but similar, data sets using the NTGR as a quality reference (Publications
[ and IV). These two studies complemented the understanding of appear-
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ance grading sawn timber using machine learning gained during the studies
directly related to the wall-panelling customer. For each of the studies pre-
sented in Publications [-VII, a data set was collected, and an overview of
these studies is shown in Figure 2.1.
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Figure 2.1: Thesis overview. Each coloured arrow indicated what type of
data is available to the data set of each Publication I-VII. Each machine-
learning model M is associated with a scanning system, which provides mea-
surement inputs, X. Each model is also connected to at least one grade, Y,
indicated by green for the product grade, red for the image grade, and blue
for the NTGR grade. The roman numeral of each Publication (I-VII) is
written next to one or two coloured arrows, indicating what data was avail-
able for that study. In Publications II, I1I, V, and VI, each Publication had
access to all the previously collected data from (B) and (P) of these data
sets. The letter I indicates the image grade referenced in the body text. The
NTGR grade used was not related to the wall-panelling customer.
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2.1 Collaborating Parties

The main collaborating industrial partners in the studies presented in this
thesis were Norra Timber and Lundgrens hyvleri. Norra Timber owns the
two sawmills Séavar Sawmill and Kéage Sawmill, that enthusiastically partici-
pated in the studies. Savar Sawmill has a C'T scanner and both sawmills uses
the same dry-sorting system. This sawmilling company is located in north-
ern Sweden and specialises in producing Scots pine and Norway spruce sawn
timber (Figure 1.3). Lundgrens hyvleri is a customer of Norra Timber, also
located in northern Sweden, producing wall panels from pine and spruce
sawn timber (Figure 2.2), and is a prime candidate for holistic-subjective
appearance grading of sawn timber. The parties will be referred to as "the
sawmill" and "the wall-panelling customer” throughout this thesis.

Figure 2.2: Three examples of Scots pine wall panels from Lundgrens hyvleri.
Source: www.lundgrenshyvleriab.se

Additionally, Microtec, the producer of advanced scanning systems for the
sawmill industry, such as the Microtec CT Log detailed in section 2.5.1,
contributed with their expertise of CT scanning round timber during the
data collection and data analysis.
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2.2 Knot Properties

The most important property of a knot is its status — sound (alive), dead,
rotten, etc. (Figure 2.3). When a knot dies, it stops growing and slowly
darkens over time, and as the trunk of the tree continues to grow, it slowly
covers the dead knot. This eventually leads to dead knots being encased in
bark, appearing as a dark ring around the knot on the sawn timber. The
distinction between a dead knot and a sound knot is by no means easy to
make, not by human nor by machine. Even if a clear definition of a dead
knot is referenced, humans and machines sometimes struggle to distinguish
between a mostly-sound knot and a mostly-dead knot as they appear so sim-
ilar. Therefore, the status of some knots is ambiguous, which is not always
accurately represented by a binary sound or dead status measurement.
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Figure 2.3: Examples of Scots pine knots: I — sound knot, 1T — dead knot,
IIT — rotten knot, and IV — spike knot, that in this case reaches the edge of
the sawn timber. From www.traguiden.se

The shape of the knot is also important for the appearance of sawn timber.
As it appears on the surface of sawn timber, the shape of a knot depends
on growth conditions and sawing pattern (Figure 2.3). Furthermore, the
growth conditions can sometimes drastically change the appearance of the
growth rings around the knot, possibly making the edge of the knot hard to
detect. Knots are often cut across their lengthwise direction and appear as
round or oval on the surface of the sawn timber. Spike knots refers to the
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shape of a knot as it appears on the surface of the sawn timber when the
knots was sawn along the growth direction — along the pith.

The appearance of the knot structure on sawn timber depends on the knots’
status, shape, size, and number. When combining these features, there exists
a large variety in the individual appearance of each knot. When viewed as
a knot structure on the surface of sawn timber, the large variety of knots
leads so an even bigger variety of sawn timber appearances — which may or
may not constitute a beautiful style, as discussed in section 1.2.1.

In the context of wall panels, dead knots, and especially dead spike knots
encased in overgrown bark, can drastically affect the appearance of sawn
timber as they appear pronounced. The appearance of dead knots may, or
may not, be acceptable depending on the product, but dead knots are in
general difficult to process as they tend to crack during splitting, profiling,
or planing. As spike knots usually only appear on the inner face of sawn
timber, the face closest to the pith, they can be hidden by using the inner
face of the sawn timber as the backside of a wall panel (Figure 2.4).

2.3 Product based Quality Assessment

The sawn timber delivered to the wall-panelling customer was used to pro-
duce wall panels. Each piece of sawn timber was split into three boards —
each profiled and planed (Figure 2.4) — which was the final product con-
sidered in this thesis (P). Neither the inner face nor the outer face of the
sawn timber was used as a visible wall panel face. Each wall panel is then
subjected to a manual holistic-subjective quality grading. The intended wall
panelling product had two grades labelled as A, for the desired grade, and
B, for the undesired grade. For the sake of the studies of this thesis, only
knots were considered by the manual graders during this grading procedure.
The most common reason for a wall panel being assigned the grade B was
knot holes or cracked knots from the manufacturing process, which is most
commonly a problem with dead knots but can happen with sound knots as
well.

Since each piece of sawn timber results in three wall panels, and since the
grading of the sawn timber happens at the sawmill, the quality grade of the
three resulting wall panels had to be translated into a grade for the piece
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‘ * Outer face (bark side)

Figure 2.4: Image showing how the sawn timber is split into three wall
panel boards. Red arrows indicate visible surfaces once the wall panels are
installed.

of sawn timber. Therefore, the majority grade of the three wall panels was
assigned to the piece of sawn timber and was called the product grade of that
piece. For example, a piece of sawn timber resulting in two wall panels of
grade A and one of grade B was given the grade A. The same labelling A and
B was used both for the grade of the sawn timber (P) and the grade of each
wall panel (P). Publication IV also uses the labels A and B but designates
unrelated NTGR grades.

2.4 Image-based Quality Assessment

One way to assess the quality of sawn timber is by images of the sawn
timber. The camera-based automatic dry-sorting system (B) could store
the raw images of the sawn timber, and they were made presentable for
easy human inspection. Depending on the grading process in mind, such a
human inspection could be made with millimetre (pixel) precision to follow
standards like the NTGR, or the grading could be made holistic-subjectively
according to an intended quality grade. In the study presented in Publication
V, such images of the sawn timber was used to identify timber sawn from
Scots pine butt logs. In the studies presented in Publications VI and VII, a
holistic-subjective grading based on four faces of the sawn timber was made
to estimate the resulting product quality, A or B, described above using the
software shown in Figure 2.5. This grade was called the image grade of the
sawn timber (I). This visual grading process is relatable to the works by
Broman (2000) and Breinig et al. (2015a,b).
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Some amount of guesswork was required to determine the product grade of
the sawn timber by images, since none of the surfaces of the sawn timber were
the wall panels’ front faces (Figure 2.4). As such, grading sawn timber as
suitable or not for this product requires intuition about how knots appear on
the surfaces of the sawn timber and how this translates to the appearance of
the knots on the visible faces of the wall panels. Each knot is usually visible
on at least two sawn timber faces, which helps assess if the knot is sound or
dead through the piece. To alleviate this uncertainty, the image grade could
be assigned a sub-grade of "certain” or "uncertain” (Figure 2.5), which was
explicitly investigated in the study presented in Publication VI.

Images of the sawn timber were graded using a simple graphical user inter-
face created as a MATLAB® app specifically for this purpose (Figure 2.5).
With the help of two researchers, the wall-panelling customer’s quality ex-
pert graded approximately 300 pieces of sawn timber to be used in the study
presented in Publication VI. At this time, it was also agreed that the two
researchers working on studies related to this product could perform a sim-
ilar grading as the quality expert had done, which was done in the study
presented in Publication VII. For consistency’s sake, the images were graded
as of grade A or B for easy comparison with the product grade, which was
called the image grade of the sawn timber.

Figure 2.5: The software (a MATLAB® app) used to grade sawn timber by
visual appearance. The software provides some simple visual manipulation
tools to make the four images of the sawn timber appear easy to interpret
and allows for grading the sawn timber piece as pass (buy) or fail (not buy)
with optional "certain” or "uncertain” sub-grades. Only about half of length
of the sawn timber images are currently visible and extends to the right.
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2.5 Scanning Systems

Two scanning systems were investigated in the studies presented in Publi-
cations [-VIIL: a CT scanner and a board scanner. Other systems, like those
used to pre-sort the logs at the log yard during data collection, were used
according to standard sawmill practices but were not monitored in any way.

2.5.1 X-ray Computed Tomography Scanning

The X-ray computed tomography (CT) scanner used in this thesis was the
Microtec CT Log (Giudiceandrea et al. 2011, Ursella et al. 2018) (Figure 2.6)
installed at Sdvar Sawmill in 2018. This CT scanner allows for 3D tomo-
graphic reconstruction and sawing optimisations at speeds up to 160 m/min,
24 hours per day. At this speed, the CT scanner measures the density inside
each log in voxels 1 x 1 x 10 mm in size (10 mm along the longitudinal direc-
tion of the log). These voxels are used to detect features inside the log, such
as cracks or heartwood based on density measurements, and in parallel, the
voxels are passed through a convolutional neural network that detects and
classifies knots (Figure 2.7, centre). Once the internal features are detected
and measured, a sawing optimisation algorithm iteratively creates virtual
sawn timber according to available sawing patterns and the detected fea-
tures are projected onto the 2D surface of virtual sawn timber (Figure 2.7,
right). Finally, the virtual sawn timber is graded, and based on this grade
the optimisation algorithm iterates the positioning of the log to find the
position with maximum quality or value yield.

The CT Log installed at Savar Sawmill was installed directly in front of the
saw such that the CT scanning, reconstruction, feature detection, sawing
optimisation, and sawing of a log takes place in a matter of seconds. Al-
ternatively, a CT Log can be installed in the log yard, where each log is
CT scanned and sorted before sawing according to some characteristics with
fine-tuned sawing optimisation. This approach enables a wider range of op-
timisation options. Then, possibly days later, the logs are scanned again
before sawing to retrieve the correct sawing optimisation from the CT Log
using fingerprinting to identify each individual log. Ursella (2021, §3.10)
presents a nice overview of the possibilities and benefits of using fingerprint-
ing techniques to track sawn timber along the sawmill production line. This
approach is used at Fiskarheden Sawmill in Sweden. Both alternatives of
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Figure 2.6: The Microtec CT Log — an example of an X-ray computed
tomography log scanner.

Figure 2.7: Example of a reconstructed log from the CT scanning (left),
highlighted example features (centre), and creation of virtual sawn timber,
as decided by the sawing optimisation (right). From Ursella et al. (2018).

installing a CT scanner are available depending on the sawmill’s production
strategies.

In this thesis, the data extracted from the CT Log was mainly the knot de-
scriptions available for the virtual sawn timber (Figure 2.7); general density
information was also extracted. To avoid excessive formalism, the use of
"sawn timber” in this thesis will be used loosely and may sometimes refer to
"virtual sawn timber” or "the resulting sawn timber from a CT scanned log”,
in the context of CT scanning.
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The knots on each face of the virtual sawn timber were measured according
to the NTGR and included:

e the position of the knot and its size in longitudinal and transversal
direction,

e whether or not the knot is dead,
e whether or not the knot touches a corner of the sawn timber,
e whether or not the knot is a spike knot, and

e whether or not the knot is steep — growing at a high angle, close to the
pith.

Based on these measurements, statistical variables were created (section 2.7.1).

2.5.2 Camera-based Dry-sorting Scanning

The camera-based dry-sorting board scanner used in the studies included in
this thesis was the FinScan Boardmaster (Anon. 2018). The Boardmaster
uses several cameras with a resolution of 0.25 mm? to scan the four faces
(inner face, outer face, and edges) of the sawn timber and detect features at
up to 240 boards per minute.

The Boardmaster measured features according to the definition by the NTGR
and included:

e the position of the knot and its size in longitudinal and transversal
direction,

e whether or not the knot is dead,
e whether or not the knot is enclosed in bark,
e whether or not the knot is rotten, and

e the position of bark inclusions and their size in the longitudinal and
transversal direction.

Based on these measurements, statistical variables could be created (sec-
tion 2.7.1).
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2.6 Data Collection and Data Structure

2.6.1 The Material and Data Collection

The material consisted of 50 x 150 mm centre yield pieces of sawn timber
from the Scots pine logs, 3.4-5.4m in length. The sawn timber was kiln
dried to approximately 14% moisture content.

As discussed in the introduction regarding the software 2.0 methodology, the
important task for humans is to diligently collect and label data in a way
that is representative of the real world. The labelling process demonstrates
the skill of grading sawn timber in an industrial setting which a machine-
learning method is then implemented to learn from the collected data. In
the studies included in this thesis, data was collected from a few different
sources with similar data structures (Figure 2.1). Each data set consisted of
a set of descriptive variables, X, almost exclusively related to knots, and a
single response variable, Y, which is the grade of the sawn timber as either
the product grade, image grade, or NTGR grade.

2.6.2 ID-marking and Tracking

Referencing Figure 2.1, the studies presented in Publications IV and VII
started the tracking of the material consisting of pre-sorted logs (R) at the
CT scanning stage (C), while the studies presented in Publications I, 11, I1I,
V, and VI started the tracking of the material at the dry-sorting station (B).
In the studies directly related to product adapted grading of sawn timber
(Publications II, III, V, VI, and VII), the tracking of the material ended as
profile-planed wall panels (P), while the studies presented in Publications I
and IV ended the tracking at the dry-sorting station by assigning the sawn
timber with an NTGR grade.

This thesis relied entirely on manually labelled and tracked material, detailed
below, which was used, but not explicitly described in Publication VII. Sim-
ilar, or at least effectively the same, methods of labelling and tracking were
used in Publications I-VI but with different starting points of tracking. Pub-
lication IV discussed how these kinds of data collections could potentially
be performed by a traceability method throughout the sawmilling process.
However, traceability was not possible through the production process of the
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wall-panelling customer, which had to be done manually. For this reason,
all of the data collections were done manually.

The butt-end of logs were colour coded with bright and distinct colours and
[D-marked with an identification number before CT scanning and sawing
(Figure 2.8a). The identification number was a two-digit number, giving a
large range of unique ID markings in combination with the colour coding.
The ID number followed a numbering scheme designed to be easy to read in
any orientation without being misread, as logs are rotated, and sawn timber
is often flipped. For example, the number 21 was not a valid ID number
as this could be misread as the precursor number 12 if flipped upside down
while moving on a conveyor belt (¢T). As this unique colour and numbering
identifier was unique for each log, each piece of sawn timber from the same log
shared the same markings, meaning both of the two centre yield pieces. To
resolve this, an additional marking was added just after the sawing process
to indicate the sawn timber’s position inside the log. Studying two centre
yield pieces, only the left or right position in the log needed to be tracked
and could be achieved with a single marking on pieces on the right. At this
point, each piece of centre yield had a unique marking on them that could
identify from which log the timber was sawn and what position the virtual
sawn timber had in the log when it was scanned by the CT scanning system.
Tracking this unique marking, each wall panel was matched to the sawn
timber it was produced from (Figure 2.8b).

In theory, the order in which the sawn timber exited the sawing machine
would be the same throughout drying, dry-sorting, and further processing.
However, as the sawn timber is likely to be scrambled on conveyor belts,
the unique markings were moved (repeated) from the butt-end of the sawn
timber to the flat faces of the sawn timber. This way, the unique markings
were visible in the images captured by the camera-based automatic dry-
sorting system used. This step was the first step during data collection for
the studies only regarding the board scanner.

This data collection method (or traceability methods) could have be used to
create a reference data set for the sawmill, and any data collected from any
system involved in handling the sawn timber could have been collected. For
example, in this thesis, data from the X-ray CT scanning and the dry-sorting
visual scanning was collected; however, any number of scanning systems
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(a) Logs at the sawmill’s log yard colour (b) Stacks of wall panels. Each patch of
coded and stamped with an ID number. colour is one piece of sawn timber split
into a triplet wall panels.

Figure 2.8: Images from start to finish of one data collection.
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could have been used to collect more data for unrelated studies to this thesis.
At this point, any number of different grades or outcomes could be appended
to the collected data set, after which the data set could be used as a reference
data set for any number of machine-learning studies. Of course, with only
one destructive quality grade such as a bending strength test, or as in this
thesis — producing wall panels.

This data collection could have been made using automatic tracking of the
material. Pahlberg (2017) studied automatic tracking of sawn timber be-
tween camera-based systems, and Flodin et al. (2008) studied tracking be-
tween a CT scanner and a camera-based green sorting system. Both works
are examples of the possibility to track individual pieces of sawn timber
through different steps of the sawmilling process, and Méller (2019) tracked
sawn timber from a CT scanner to the final dry sorting with varying ac-
curacy depending on the implementation. By using such methods, a data
collection like the one discussed above could be made automatically. Even
if a tracking algorithm is not 100% accurate, Moller (2019) showed the pos-
sibility to track above 90% of the sawn timber with 100% accuracy, which
over time could amount to any sized data set. As the data collected in this
thesis regarding product-adapted grading needed to pass through the cus-
tomer’s refinement process, which did not allow for traceability, any data
collection including the customer was done entirely manually. Publication
IV explored the possibilities of using traceability from the CT scanning to
the board scanning, based on Méller (2019).

To reiterate the introduction, the possibilities and benefits of traceability of
material through a sawmill is nicely covered by Ursella (2021).

2.7 Machine-Learning Implementation and
Analysis

Sections 2.3 and 2.4 introduced the quality grades A and B for the product
grade and image grade, respectively. Figure 2.1 shows an overview of the
available data showing the input, X, from the CT scanner (C) and the board
scanner (B), and the output, Y, as the product grade (P), and the image
grade (I), or the NTGR grades. The available data was collected as multiple
data sets with either of the X and Y, or both.
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2.7.1 Available Data Sets and Variables

The attributes of the available data sets, variables, and grades will be de-
tailed in Chapter 3, as the intricate combination of these parts and the
respective results must be explained coherently and concisely. Therefore,
the combination of attributes of each data set will only be covered in brief
here, while the actual calculation of variables will be the main focus.

Five data sets were collected according to the tracking methodology de-
scribed in section 2.6.2 — one for each of the studies presented in Publica-
tions II, III, V, VI, and VII. These five data set were considered primary, as
they related to the wall-panelling customer. The two data sets associated
with Publications I and IV were considered secondary as they did not re-
late to the wall-panelling customer. The secondary data sets were collected
similarly to the primary data sets and were automatically attributed with
grades according to the NTGR by the board scanner, as well as a manual
quality grade reference used for training of the machine learning models.

Each of the data sets was tracked according to section 2.6.2, and was at-
tributed with a visual quality assessment and product-based quality assess-
ment according to Figure 2.1, section 2.3, and 2.4. One of the data sets
were different from the other in that the sawn timber was partially covered
in dust (see Publication III), while the remaining data sets were impossible
to distinguish from each other by visual inspection. As all data sets passed
through the dry-sorting station, posterior analysis of the entire data col-
lection was made to confirm this statement. The data sets each consisted
of approximately 250-300 pieces of sawn timber, which amounted to 1454
pieces in total.

Each data set was also attributed with variables calculated from measure-
ments from each investigated scanning system related to the corresponding
study. Out of the primary data sets, one data set had variables from both
the CT scanner and the camera-based board scanner. The other primary
data sets only had a set of variables from the board scanner. The secondary
data sets had similar, but different, variables attributed to them from both
or either of the CT scanner and the board scanner. These sets of variables
were different for each secondary data set as different persons were in charge
of calculating the variables due to mismatched formats that prevented the
re-purposing of code-bases.
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The board scanner’s measurements of the knot structure on the surfaces
of the sawn timber (see section 2.5.2) were used to calculate a large set of
variables (Table 2.1). A collection of 22 variables, such as "total number
of defects” or "maximum defect size”, were calculated for 6 different defect
types on 3 different faces of the sawn timber (edges together), and repeated
in 9 different zones along the length of the sawn timber (Figure 2.9). This
amounts to a total of 22 x 6 x 3 x 9 = 3564 highly correlated variables. The
calculation of similar variables was originally done by Berglund et al. (2015)
and again by Olofsson et al. (2017), which was the precursor to the set of
variables detailed here.

The CT scanner’s virtual sawn timber has similar information and data
structure as the sawn timber scanned by the board scanner, namely a 2D
measurement of the knot structure of the surfaces of the virtual sawn timber.
The CT scanner’s measurements of the virtual sawn timber were used to
calculate a set of variables similar in aim and scope to the one detailed in
Table 2.1. This CT-based variable set is not detailed here because it is
similar enough to what is detailed in Table 2.1.

Figure 2.9: Illustration of the virtual copies and sectioning of each plank
(Berglund et al. 2015).
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Table 2.1: A complete description of all the variables calculated using the
board scanner measurements. Similar variables were calculated based on the
CT scanner measurements. Each variable in the first column was replicated
for each entry in each of the other columns. The number of entries of each
column is shown at the bottom, where the total number of variables is the
multiple of the values in the bottom row.

#

Variables

Defect types Plank faces Sections

1
2
3

>

co 3 O Ot

9

10
11
12
13
14
15

16
17
18
19
20
21
22

Total Number of defects
Avg. defects size

Maximum defects size

Sound knot Inner face 1

(mm) Dead knot
Std. dev. of defects size (mm) Sound or

Outer face 3

Both edges 5

dead knot

knot

(mm) Bark-ringed

Sum of defect area (mm?) Rotten knot

£ defect area

Ratio of (
surrace area
(

Ratio of
sum of all defect areas
Number of defects per meter (m™

Ratio of defects of sizes:
< 9 mm (%)
10-19 mm (%)
20-29 mm (%)
30-39 mm (%)
(%)
(%)
(%)

sum of defect area

A

)

40-59 mm
60-79 mm
> 80 mm

Number of defects per meter:
<9 mm (m™)
10-19 mm (m™)
20-29 mm (m™)
30-39 mm (m1)
40-59 mm (m™)
60-79 mm (m™)
> 80 mm (m™)

%) Bark pocket

22 variables X
— 3564 variables

6 types

x 3 sides

X 9 zones
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2.7.2 PCA, PLS, and Software

Multivariate principal component analysis (PCA) and projection to latent
structures (PLS!) are commonly used tools for data analysis and regression
modelling with predictions and is covered thoroughly in online sources and
the literature, such as Wold et al. (1984, 2001) and Geladi and Kowalski
(1986). In particular, the work of Eriksson et al. (2013), detailing computa-
tional implementations, analytical tools, and illustrative examples of PCA
and PLS, which also is the basis of the Sartorius software SIMCA® (previ-
ously developed by Umetrics®) has been used throughout this thesis. Below
is an overview of PCA and PLS for ease of reference. PCA was not explic-
itly used in the Publications in this thesis, but was extensively used as an
analysis tool to further the development of the PLS models used.

PCA reduces the number of dimensions (number of variables) of a data set
to easily describe it, while retaining as much information as possible and
remove noise. The reduction of dimension is achieved by linearly combining
the dimensions of the original data set into orthogonal so-called principal
components (PC). By reducing the number of dimensions, underlying latent
(hidden) structures and variable correlations can become apparent. The
first such PC is computed as the eigenvector of the covariance matrix of the
data set. For example, reducing a data set regarding cities in the USA from
9 dimensions to 2 greatly simplifies the interpretation of the data (based
on the documentation presented by The MathWorks, Inc. (2021b)). This
is particularly true for data sets with a very high number of dimensions
(several hundred) which often can be described to a large extent with only a
few PCs. A PC is computed to fit a data point cloud so that the variance of
the residuals is minimised by least squares (Figure 2.10). Iteratively, more
PCs can be added following the same procedure, where two components
seems the most common — possibly because it allows for nice 2D plots of the
data.

PLS regression also reduces the number of dimensions of a data set like
PCA. Still, it is different from PCA because it is not meant to describe a
data set, but to use the data to make predictions by regression or discrim-
inant analysis (classification). Similarly to PCA, PLS regression iteratively

RIS}

'PLS have in the literature been referred to as “projection to latent structures”, "partial least squares
regression”; and "projection to latent structures using partial least squares”.
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X, ~ t(5)

| | | | | |
0 2 4 6 8 10 12
X, ~ Gamma(4,1)

Figure 2.10: Simulated data used to illustrate the differences between PCA
and PLS — for illustrative purposes only. The simulated data consists of two
dependant and correlated variables, X; and X5, following the Student-t dis-
tribution and Gamma distribution, respectively, as shown by the histograms.
Red (class 0) and blue (class 1) data points indicate two classes separated
by the green line and some noise. The black line is a principal component
(PCA) along the direction of maximum variance in the data, regardless of
class. The yellow line is a latent structure used for PLS discriminant analy-
sis (PLS-DA), estimating the direction that maximally separates the classes.
Based on the documentation presented by The MathWorks, Inc. (2021c)
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computes latent structures to perform the regression or classification (Fig-
ure 2.10). This iterative process is repeatedly checked for overfitting using
cross validation, meaning the model is only trained on relevant information
and not noise, which should be removed from the regression. These two
steps arguably differentiate PLS from ordinary regression and makes PLS
part of the realm of machine learning.

To perform classification using PLS on the entire simulated data set shown
in Figure 2.10, meaning self-prediction or predicting the training set in
machine-learning terms, the entire data set is projected onto the latent
structure (Figure 2.11). Then, by introducing a classification threshold of
the predicted class of, for example, 0.1, all observations with a predicted
class below 0.1 are classified as of class 0, while all observations above 0.1
are classified as of class 1. In this example, there is a large overlap of the
classes along this latent structure, indicating the need for additional latent
structures.

O

Observed class
o

-2 -1 0 1
Predicted class

Figure 2.11: Observed vs predicted plot of the latent structure shown in
Figure 2.10.
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CHAPTER 3

Results and Discussion

Machine learning can model subjectivity

41
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The objective of implementing a machine-learning model to perform holistic-
subjective appearance grading of sawn timber in a way that is easy to cus-
tomise and control was achieved using PLS models. The grading accuracy
of the PLS models implemented was on par with, or exceeded, the perfor-
mance of traditional rule-based grading. Furthermore, the sorting outcome
was easy to control, giving the sawmill and customer the ability to balance
high volume deliveries with high product yields. This was achieved by study-
ing the implications of the training data on the grading performance of the
PLS models.

3.1 PLS-based vs Rule-based Grading
Accuracy

When considering the grading accuracy of appearance graded sawn timber,
it is important to avoid unfair comparisons. Different grading tasks have
different grading difficulties, and as such, the grading accuracy of one task
should not be compared with the grading accuracy of another.

As the accuracy of standardised rule-based appearance grading of dried sawn
timber was stated in the introduction to be good — maintaining a value yield
of 98%, a quality yield of 95% (Lycken 2017) — one might question the need
for a different grading method. These metrics are important for customers
as a highly accurate quality assessment means that the customer knows
what to expect of the delivered sawn timber. It is important to understand
that these metrics are for standardised appearance grading — something the
sawmills investigated are very familiar with, and their performances have
improved over a long time.

A CT scanner allows for the grading of virtual sawn timber. The virtual
grading performed in this thesis used rules to grade the virtual sawn timber
for many sawing positioning alternatives to optimise the value yield of the
log. This virtual grading was very similar to the grading performed by the
board scanner at the dry-sorting station, with similar information available.
However, due to technical reasons, the CT scanner was made to perform
the PLS-based appearance grading of the virtual sawn timber after the rule-
based method had been used to determine how the timber should be sawn.
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The main focus of the studies presented in this thesis was regarding a specific
wall panelling product of one customer, where the sawmill and customer
have tried to calibrate a rule-based grading to functional but unimpressive
results. There exists no metric today to describe this transaction other than
this statement. The unimpressive results are the problems of coherency
and conciseness of creating new rules, detailed in section 1.2.3. Using the
machine learning methodology presented in this thesis allows for product-
adapted appearance grading of sawn timber by the grade of the wall panelling
product, which will be covered in section 3.1.2, while section 3.1.1 will be
used to introduce PLS-based grading in a standardised use-case to establish
context.

3.1.1 Standardised or Customised Rule-based Grading
Sorting of Dried Sawn Timber

An important consequence of the limitation to only consider knots in the
studies presented in this thesis is that knots are the most difficult feature to
base a quality assessment on. This is mainly due to the fact that the status
of the knots are difficult to determine. For example, sawn timber with rot is
easily detected and easily graded and therefore the grading accuracy of such
pieces is high — regardless of the difficulty of assessing the knot structure
of the sawn timber. In contrast, by limiting the grading process to only
consider knots, the difficulty of the grading process increased. When the
board scanner performed standardised appearance grading according to the
NTGR and only considering knots, the grading accuracy was 81% according
to a manual quality reference (Publication IV) — in contrast to the 95% found
by Lycken (2017). Using PLS-based grading in the same test increased the
grading accuracy marginally to 82%.

Studying appearance grading of dried sawn timber for an exporting customer
using a customised rule-set based on the NTGR showed two major results
(Publication I). Firstly, the grading accuracy of the customary rule-based
approach calibrated for this task was 64%. In comparison, a multivariate
PLS machine-learning method trained for the task managed 84%, compared
to a manual reference grading. Secondly, in a verification test, the manual
grader who performed the reference grading agreed with the grading of the
rule-based system 81% of the time and with the PLS-based approach 95%
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of the time. Thus, the verification test showed both approaches as hav-
ing higher grading accuracy than initially found by the grading test, which
indicates the difficulty of appearance grading. These results also showed
that an appearance grading performed by a PLS-based system was difficult
to distinguish from the manual quality reference defined to train the sys-
tem on, even by the quality expert whom themselves performed the manual
grading. Furthermore, the verification accuracy of the quality yield of the
PLS-based approach was the same (95%) as the standardised appearance
grading accuracy found by (Lycken 2017).

These results imply that a machine learning model, based on multivariate
PLS, can outperform conventional rule-based grading when performing a
customer-specific grading and that the performance is essentially equal when
performing standardised quality grading. As described in section 1.2.3, the
problems of coherency and conciseness of customising a set of rules make
customising grading rules a very difficult task, even for highly skilled per-
sonnel (Lycken 2017). These difficulties make the grading accuracy lower
when customising the grading rules, and the grading accuracy of a mature
grading system at 95% (81% when only considering knots) can not be ex-
pected. As for the machine-learning approach, once the framework of a
machine-learning approach has been implemented (automation of creating
the variables, X), the creation of a new customer-specific model only re-
quires a new data set to be collected, or, better still, perform a manual
grading Y on an already collected reference data set. The latter would be
very easy to implement using images of the sawn timber as the basis for
the quality assessment, as they can be easily distributed and re-used. The
studies presented in Publications VI and VII showed the image grade to
be equally as useful as the product grade for training the machine learning
models for product-adapted grading, indicating that an image grade could
be sufficient for other customers as well. Furthermore, the image grade was
used to classify timber as sawn from butt logs or top logs (Publication V),
which is also a type of appearance grade.
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Grading of Virtual Sawn Timber by CT Scanning

The CT scanner graded the virtual sawn timber with a grading accuracy
of 79% using rule-based grading, using manual grading of the sawn and
dried timber as reference (Publication IV). In the same study, the board
scanner used rule-based grading to achieve a grading accuracy of 81% — the
same as the above-presented results of a rule-based board scanner. However,
rule-based systems are sensitive to measurement errors since, for example, a
single knot that is inaccurately measured too large could violate a rule and
demote the sawn timber to a lower grade. Similarly, a rotational error during
sawing could make a knot appear on another face of the sawn timber than
intended and similarly violate a rule. These problems manifested themselves
as an agreement between the two rule-based systems of 77% (Publication
IV). When a PLS-based grading was used in both the CT scanner and the
board scanner, a grading agreement of 82% was achieved. Furthermore,
the board scanner using PLS-based grading agreed with manual grading
to 82%. These results indicate that the soft modelling of features of PLS
models, meaning that no single measurement determines the grade of the
sawn timber, helped with the grading agreement between the two systems.
This is due to the fact that PLS models linearly combines each variables
and therefore the measurement of one variable can not solely determine the
grade, which, for example, prevents measurement errors from altering the
grade.

3.1.2 Product-adapted Grading

Sorting of Dried Sawn Timber

The studies presented in Publications II, III, V| and VI (Figure 2.1) were
dedicated to studying the use of PLS-based machine-learning models in the
board scanner at the dry-sorting station to perform product-adapted ap-
pearance grading. Four models were trained using the product grade, and
one model was trained using the image grade. The models reached a grad-
ing accuracy of 74%-76%. More models were trained when investigating
nuances of the training and testing conditions (Publication III, V| and VI),
and the grading accuracy range expanded to 70%—77%, more on this in sec-
tion 3.2. These grading accuracies should not be compared with the grading
accuracies discussed in section 3.1.1, as the use-case is different, but should
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only be compared to the statement in the preamble of section 3.1 — unim-
pressive results. These studies resulted in the customer receiving a batch of
77%-82% grade A sawn timber (these number are not explicitly calculated
in some of the Publications II, III, V, and VI). Worth remembering is that
some grade B wall panels are always to be expected, as some knots can crack
regardless of their status (section 2.3).

3.2 Implications of the Training Data

3.2.1 Measurement Disturbances

A key concept with machine-learning models is the generalisation of the
model — the ability of a model to make predictions about things the model
has never seen before (not been trained on). A good generalising PLS model
is achieved by carefully selecting the training data to represent the intended
use-case of the model, which in the studies presented in this thesis is an in-
dustrial sawmill. During the handling of sawn timber in a sawmill, things like
dust and oil stains from conveyor chains can conceal or distort the appear-
ance of the sawn timber in a way that is difficult to handle by camera-based
systems. Such obstructions make knot detection more difficult and make
the measurements of the board scanner less reliable. Effectively, the dust
simulates excessive measurement errors. By training a PLS model on two
data sets, one clean and one dusty, the grading accuracy of the model in-
creased from 74% to 77% when grading clean sawn timber, and the grading
accuracy increased from 70% to 73% when grading dusty sawn timber (Pub-
lication III). Essentially, the model became more robust to the adverse effect
of the dust when this was accounted for in the training data — reinforcing
the common idea that training on more data is better. It is unclear how a
rule-based system would have been affected by this excessive amount of dust
on the sawn timber. However, one can infer that a dust stain misinterpreted
as a very large knot would negatively impact the grading accuracy, possibly
to a large degree.
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3.2.2 Class Balance and Class Overlap

Two important aspects of classification problems are the aspects of class bal-
ance and class overlap. Class balance indicates the proportions of each class
in the classification problem. For example, a binary classification problem
with 100 members of each class is a perfectly balanced classification problem.
On the other hand, which is the case of, for example, cancer detection, the
class of healthy people might have 98 members and the class of people with
cancer only two. Training a machine learning classification model on such a
data set would leave the model susceptible to a large bias, as predicting 100
out of 100 people as healthy would still leave the model with a "good” 98%
classification accuracy, even though the model is completely useless.

In the context of product-adapted appearance grading of sawn timber, the
data sets associated with Publications II, III, V, VI, and VII had a class
balance of 62%-67% grade A pieces of sawn timber, which was considered
a moderate class imbalance. However, the study results presented in Publi-
cation VI did not show a way to alleviate the class imbalance, nor did they
show that class imbalance was a problem for the classification problem of
the wall-panelling customer.

Class overlap indicates the difficulty of separating classes, meaning that
according to some metric, an observation may appear to be part of several
classes. For example, the classification problem of separating humans from
gorillas by their height has a large class overlap (gorillas are approximately
1.6 m tall when standing upright), while separating the two by the span
of their arms have a small class overlap (gorillas arms span approximately
2.4m).

The data set associated with Publication VI was found to have 25% of the
251 pieces of sawn timber that the quality expert of the customer could not
decisively assign an image grade. The quality grade of these 64 pieces was
ambiguous to the degree that a model trained on the entire 251 pieces data
set had the same grading accuracy as a model trained with these 64 pieces
removed (Publication VI). Similar attempts were made in the same study to
remove sawn timber with an ambiguous product grade, but the method used
to remove pieces lowered the grading accuracy. The implication of removing
parts of the training data yet retaining the same grading accuracy is that
better data collection can be made. In the case of the image grade, any
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pieces of sawn timber inspected using the "plank-grader” app (Figure 2.5),
where the grade can not be decisively determined, could be skipped to save
time and effort as these does not contribute to the accuracy of the model.

The ambiguity of the sawn timber’s image grade indicated that the true
grade of the sawn timber was difficult to predict even for a quality expert,
and the fact that the product grade does not yield stronger prediction mod-
els indicated that no additional information was to be gained by tracking
the entire data set through the customer’s production process (Publications
VI and VII). Furthermore, more training data resulted in a higher grading
accuracy compared to trying to compensate for the class balance or class
overlap of the training data. Similar arguments was made about the effect
of the dust discussed above.

These results indicate that it is possible that more training data would in-
crease the grading accuracy of the models. It is also conceivable that the
effects of class imbalance and class overlap were not a major concern in the
studies presented in this thesis because of the fact that the data collections
started as pre-sorted logs. The pre-sorted logs selected (Scots pine top logs)
were considered suitable for this particular customer by the sawmill, which
could have alleviated the effects of class imbalance and class overlap.

3.2.3 Variables

The creation of the variables used in the board scanner, detailed in Table 2.1,
was based on previous work on the multivariate classification of sawn timber
found in the literature (section 2.7.1). The scope of this set of variables was
then reproduced for the CT scanner. Each variable used was selected to
increase the available information in the variable set, partially based on
the information the NTGR tries to convey. Furthermore, the sectioning of
the sawn timber used (Figure 2.9) was implemented to include positional
information of the knots into account. Admittedly, the decision to add more
variables or not was difficult to argue either way. However, extensive testing
outside of what is published in this thesis indicated that removing variables
lowered the grading accuracy of the tested PLS models while adding more
variables did not increase the grading accuracy. This would indicate that
the number of variables in the finalised variable set detailed in Table 2.1 had
reached a point of diminishing return such that no additional information
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could be provided with additional variables. Had a different approach to,
for example, the sectioning of the sawn timber (Figure 2.9) been used, the
diminishing return of the number of variables could have been experienced
differently.

3.3 Sorting Outcome

Grading accuracy is only one of the metrics to consider when grading sawn
timber. The sawmill wants to deliver as much of the sawn timber as possi-
ble to the intended customer, and the customer wants to process as much
grade-A quality sawn timber as possible. Therefore, grading accuracy might
not always be the best metric to judge a model’s performance by, as grading
accuracy only measures the accuracy of the grading system. PLS regression
models use a classification threshold (section 2.7.2) to perform the classifi-
cation. This threshold is by default selected to optimise grading accuracy,
which in a normalised context would be 0.5, but can be set to any value (0-1
representing a continuous range from B—A). By setting the threshold to a
larger value, making the model more strict (certain) about its classifications,
a higher proportion of the sawn timber delivered from the sawmill would be
of grade A, and vice versa (Publication IT). This classification threshold gives
very simple control over the sorting outcome, as only one setting needs to
be controlled to change the balance between a high volume delivery and a
high "purity” of grade A sawn timber in the delivery. However, changing the
threshold (introducing a bias) inherently means that some pieces of sawn
timber are misclassified, which would lower the grading accuracy on the
total data set tested.

3.4 Product-adapted Sorting Before Saw-
ing of the Log

CT scanning of logs gives the sawmill information about the internal knot
structure of each log and thereby of the virtual sawn timber (Figure 2.7)
prior to sawing. The virtual swan timber can be graded and, based on this
grade, a decision about how to saw the log can be made. Effectively, grading
the virtual sawn timber allows for green sorting of the sawn timber before the
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timber is sawn, as well as control over how each piece of sawn timber should
be dried. For example, only allowing very likely grade A pieces of sawn
timber to be dried according to the needs of the wall-panelling customer
would greatly reduce the amount of sawn timber rejected at the dry-sorting
station, which would save on drying costs. This section is based on the study
presented in Publication VII and regards a data set consisting of 303 pieces
of sawn timber.

No control over the sawing was given to any PLS model, instead, a rule-based
control system decided how to saw the log, based on the above described
process. The rule-based system used customer adapted rules to optimise the
sawing of the log to maximise the yield of grade A sawn timber suitable for
the wall-panelling customer. If no grade A virtual sawn timber was found
in the log, it was sawn according to the needs of an unrelated customer.
Once a decision had been made how to saw the log, the measurements of the
virtual sawn timber was extracted and used by a PLS model to grade the
virtual sawn timber. Furthermore, complementary rules was used to enforce
upper limits to a few measurements in both the CT scanner and the board
scanner.

The use of complementary rules was deemed necessary for this study, which
measured, for example, abrupt pith deviations (CT scanner) and rotten
knots (board scanner). The rules defined upper limits on six measurements
in the CT scanner and 7 in the board scanner. The main reasoning behind
this inclusion of rules was that these measurements were rare and ambiguous,
meaning that very few data points showed whether or not these measure-
ments correlated positively or negatively with the product grade. This made
these measurements influence over the predicted grade weak, even though
the few existing data points showed a high risk associated with these mea-
surements.

Using the rule-based system in the CT scanner, and removing 28 pieces
of sawn timber by complementary rules in the CT scanner and 28 pieces
(12%) in the board scanner, resulted in a delivered batch of 200 pieces of
sawn timber with 77% grade A pieces. By comparison, section 3.1.2 shows
how a PLS-based dry-sorting without CT-based pre-sorting resulted in 77%-—
82% grade A sawn timber in the delivered batch. This means that the
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overall effectiveness of rule-based sorting is significantly lower than PLS-
based grading in both systems.

Using a strict image-trained PLS model in the CT scanner, and removing
21 pieces of sawn timber by complementary rules in the CT scanner and 9
pieces (7%) in the board scanner, resulted in a delivered batch of 115 pieces
of sawn timber with 90% grade A pieces. Additionally, if the dry-sorting
station was skipped entirely, the delivered batch would have consisted of
85% grade A sawn timber. These results show that the image grade was
useful to train a PLS model for grading of virtual sawn timber and how
controlling a single setting (the classification threshold) changed the entire
production strategy. With this approach, only virtual sawn timber with a
very high probability of resulting in grade A wall panels can be dedicated to
this customer, sawn and dried accordingly, and delivered with a high product
yield for the customer. The number of delivered pieces of sawn timber is
lower for the PLS-based approach, however, this can easily be tuned by
changing the classification threshold, at the cost of lowering the "purity” of
grade A pieces in the delivered batch.

3.5 Limitations of PLS and Machine-learning
Methods

The use of variables as presented in this thesis is not in line with the soft-
ware 2.0 methodology described in the introduction (section 1.3). Humans
have an incredibly poor "feel” for what variables are important for a partic-
ular problem and to what degree — especially in the context of the specific
machine-learning model used. Therefore, the creation of a variable set re-
sembles a trial and error process. This trial and error approach, even with
the careful analysis of the variable set using PCA and PLS models, makes
it difficult to judge if the perceived maximum limit of the grading accuracy
is due to the set of variables used, due to the PLS machine-learning method
used, or due to a natural limit of this specific classification problem. In par-
ticular, since PLS is a multivariate linear regression method, it is difficult
to tell how the linearity of the model affects the grading accuracy — if at
all. For example, the number of knots is not perfectly linearly correlated
with the grade of the sawn timber — too few knots leaves the appearance
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wanting for more, and too many knots makes the appearance appear messy.
This means that there is, in some sense, an optimal number of knots, which
can not be accurately described by a linear model. Figure 2.10 shows how a
linear model fits moderately non-linear data.

Creating a set of variables is akin to defining, for example, the architecture of
a neural net. The problem of knowing if the currently defined architecture is
holding the performance of the neural net back or not is the same problem as
defining the variable set is to a PLS model. Similar arguments can be made
about any machine-learning method. In essence, machine-learning methods
can appear to be a black-box plug-and-play solution to almost any problem,
which it rarely is.
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The objective of this thesis was to introduce machine learning to the process
of the appearance grading of sawn timber in a way that is easy to customise
and easy to fine-tune. To reach this objective, a machine-learning model
needed to be implemented and trained to mimic the appearance grading
performed by an experienced manual grader but faster and more reliably.
Such an approach to appearance grading would allow for product-adapted
grading and sorting of sawn timber, resulting in higher quality yield for
the customer and lower refinement costs for the sawmill. This thesis only
considered knots and detailed the implementation of PLS models in a CT
scanner and a board scanner, and the implications of the training data on the
grading performance and sorting outcome. Furthermore, to train a product-
adapted machine-learning model, the use of the resulting product grade of
the sawn timber or the image grade of the sawn timber was investigated.

To establish a baseline for comparison, appearance grading of dried sawn
timber by standardised quality grades using a PLS model was studied. A
PLS model trained on a manual quality reference achieved an 82% grading
accuracy compared to 81% of a conventional rule-based approach. The man-
ual grader agreed to 95% with the PLS model and 81% of the rule-based
grading in a verification test. As this grading scenario was common practice
for the sawmill, the set of rules used was considered fine-tuned and that
the difficulties of coherently and concisely defining the rules were solved for
this scenario. The PLS-based approach was deemed easy to customise for
this grading scenario, as it could match the performance of the fine-tuned
rule-based approach without implementation or calibration difficulties. The
verification agreement of 95% shows that the PLS model graded the sawn
timber according to how it was trained, as the manual grader could not
significantly distinguish between the grade assigned by the PLS model from
the quality grade they had defined for the training data.

When performing product-adapted grading of dried sawn timber, the set
of rules used could not be coherently and concisely defined such that the
grading outcome was impressive to the wall-panelling customer. Training
a PLS model on either the product grade or the image grade resulted in a
grading accuracy of 70% — —77% in several testing scenarios. The scenarios
investigated the aspects of class balance, class overlap, and measurement dis-
turbances of the training and testing conditions for PLS models and found
that training on all available data always yielded the highest grading ac-
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curacy. The grading accuracy resulted in the customer receiving 77%-82%
grade A sawn timber batches. As the image grade was as useful for train-
ing a PLS model as the product grade, the logistical process of delivering
unsorted sawn timber to the customer was unnecessary. Instead of perform-
ing a manual data collection, if a traceability method was implemented to
collect the data from the board scanner automatically, the entire data collec-
tion needed for a new customer adaptation could be done in software, which
would drastically simplify the data collection process, which is in line with
the industry 4.0 concept.

Using a PLS model in the CT scanner for product-adapted grading of virtual
sawn timber allowed easy control over the sorting outcome. For example, a
PLS model trained using the image grade could be controlled such that the
sorting outcome resulted in a delivered batch of 90% grade A pieces of sawn
timber, following a dry sorting that only rejected 7% of the sawn timber. If
the dry-sorting station had been skipped entirely, the delivered batch would
have consisted of 85% grade A pieces of sawn timber. Furthermore, using a
rule-based approach in the CT scanner, the dry-sorting station rejected 28
pieces (12%) and delivered a batch of 77% grade A pieces of sawn timber.
These results show that PLS-based product-adapted grading is more efficient
at separating grade A sawn timber from grade B than a rule-based grading
in both the CT scanner and the board scanner. Furthermore, as a delivered
batch of 85% grade A pieces of sawn timber is purer than the grading-
accuracy optimised PLS-based dry-sorting of 77%-82% grade A pieces, it
seems conceivable to perform CT-based sorting only.

Once a framework for a machine-learning method such as PLS has been
implemented, this thesis shows the ease of customising and fine-tuning a
PLS model. A PLS model was shown to be easy to customise for both a
customer of appearance sorted sawn timber and a specific product. The
use of a classification threshold makes the grading outcome easy to control
intuitively, which allowed for new grading strategies in a way that rule-based
grading does not support. Furthermore, the ability of the PLS models to
retain their grading accuracy for different training and testing scenarios, as
well as the use of an image grade as a quality reference for training, showed
that the data collection necessary to implement machine-learning methods to
be straightforward and not require an expert level understanding of machine
learning to perform.



o6

CONCLUSIONS




CHAPTER 5
Future Work

Someone should develop an app for this

57



58 FUTURE WORK

Based on the findings of the present thesis, one can infer a few things about
the future and potential opportunities for future studies. Although ma-
chine learning studies are extremely popular these days, this alone should
not be the reason to publish articles related to machine learning. Careful
consideration should be given during the design phase of new studies to the
suitability of machine learning. Below follows examples of some areas of
research potentially suitable to further machine-learning studies.

5.1 Qualitative Measurement of Grading
Accuracy

The grading accuracy detailed in the present thesis was based on the product
quality outcome of the sawn timber. However, as there is always some
amount of grade B wall panels to be expected due to, for example, the
random cracking of knots, grading accuracy in and of itself might not be a
fair performance metric. Instead, the grading accuracy could be measured
by a qualitative measurement of the quality of the sawn timber — essentially
determine if each piece of sawn timber has a high chance of resulting in
quality A wall panels.

5.2 CT Scanner Sorting Only

For some grading operations, the dry-sorting process of the sawn timber
might not be necessary. With the intended wall-panelling customer in mind,
the board scanner only removed 7% of the sawn timber following the sorting
performed by the PLS-based CT scanner. Furthermore, the 7% of the sawn
timber removed was largely due to visually very distinct features that the
CT scanner could not easily detect, for example, rotten knots — something
that is not suitable for wall panels. Such features are quite easy to detect
(Figure 2.3) by the manual graders at the customer’s quality control station.
In practice, this could be used to skip the dry-sorting station entirely and
deliver a batch of sawn timber directly after drying, which would save on
cost for the sawmill, and the customer could get a cheaper price. The possi-
bility of using only one grading operation in the CT scanner might be more
applicable to other use cases.
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5.3 Simulated Product Manufacturing in
CT Images

CT scanning gives a high-resolution 3D image of the internals of each scanned
log, which in the present thesis was used to create virtual sawn timber.
Remembering that non of the sawn timber’s outer faces were used as the
wall panels’ visible faces, therefore, it would be interesting to study simulated
product manufacturing in the CT images by splitting, profiling, and planing
the virtual sawn timber. This way, it would be possible to get information
about the visible face of the wall panels and simulate how, for example,
profiling of the virtual sawn timber would interact with knots.

5.4 Machine Learning-based Sawing
Optimisation

As demonstrated by, for example, Ursella (2021), the accuracy of detect-
ing knots and other features in CT images is getting higher and higher as
the technology matures. With the accurate detection of features comes the
ability to determine the optimal sawing conditions with high granularity.
However, with the large number of features detected in CT images and with
the large number of grades to choose from at the CT-scanning stage (a log
can basically be sawn into any product), the task of determining the optimal
sawing conditions is getting convoluted. This problem could be a candidate
for a machine-learning solution, where a machine-learning model could de-
termine the optimal sawing based on 3D CT images. Unfortunately, in the
study presented in Publication VII, the PLS models were not in control of
how the log was sawn, the implications of which should be the subject of
future studies.

5.5 Traceability

Each log and the resulting sawn timber are not tracked throughout the refine-
ment process in most sawmills. Assuming that it was, one would only have
to perform one data collection from a particular sawmill to create a refer-
ence data set with available descriptive measurements, X, from all available
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scanning systems. Any number of outputs or grades, Y, could be appended
to the reference data set later. At this stage, a large number of possible
machine-learning studies would be possible.

Achieving 100% accurate traceability is close to reality, as 92% of the ma-
terial investigated by Olofsson et al. (2019) was theoretically tracked from
a CT-scanning system to a camera-based board scanning system, using the
traceability algorithm developed by Méller (2019). Furthermore, Flodin et
al. (2008) achieved above 95% when matching the centre yield sawn from
CT-scanned logs with a camera-based green sorting system; Pahlberg (2017)
achieved above 99% traceability of sawn products traced between camera-
based systems, and; Ursella (2021) achieved 99.6% tracking accuracy be-
tween a CT Log scanner and another X-ray based scanning system (a Mi-
crotec Logeye). To be clear, traceability methods could bring many benefits
even if they are not 100% accurate, especially since errors in matching are
often due to pieces of sawn timber being so similar.

The use of traceability methods could enable co-operation between, for ex-
ample, a CT scanner and a board scanner. The board scanner could com-
plement the grading of the CT scanner with additional camera-based infor-
mation, in contrast with today’s setup where the systems might hinder each
other (Publication IV). The addition of camera-based information regarding
knots could be particularly useful as knots, possibly filled with resin, and
bark, as they are difficult to distinguish from each other by their density
profiles measured by the CT scanner. This difficulty could make the board
scanner able to complement the information from the CT scanner with in-
formation about knots and bark and thereby increase the grading accuracy.

5.6 Product-adapted Appearance Grad-
ing a la Carte

A few puzzle pieces are needed for product-adapted grading a la carte.
Firstly, a traceability method needs to be used to automatically collect a
large database of sawn timber, consisting of many samples for each wood
species and for each sawn timber dimension that a sawmill produces, depend-
ing on the use case. Each sample of sawn timber should be attributed with
scanner data from each scanning system available at the sawmill. Secondly,
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images of the sawn timber need to be automatically collected by, for exam-
ple, a board scanner, similar to those used in the present thesis. Thirdly,
a website running a similar grading process as the one used in this thesis
(Figure 2.5). Together, these three puzzle pieces would create an interface
for a customer to select the species, dimensions, and appearance of sawn
timber they would like to purchase. In the background, a machine-learning
method could then simulate the sorting outcome and calculate a price for
that sorting, which the customer can verify. Such an implementation could
enable customers to finalise a customer or product-specific sorting grade by
themselves before even contacting the sawmill.
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ABSTRACT

At Scandinavian softwood sawmills, the most common system for grading of sawn timber in
dry conditions is optical scanning equipment together with a rule-based automatic grading
system (RBAG). The procedure to define new grading rules towards a customer with specified
requirements is a time-consuming work for sawmills and is rarely implemented in a satisfactory
way neither for the customer nor for the sawmill. An important consequence is that sawmills
will, in general, not be able to deliver products that utilize the full potential of the quality
distribution of the sawn timber produced at the sawmill. Their customers will get products with
mismatch in desired and delivered quality grades. Thus, there is a need for a methodology that
facilitates time and cost effective grading toward specific customers’ needs. The objective of
the study was to further develop and validate a method that complements the RBAG by a
holistic-subjective automatic grading (HSAG) approach - using multivariate regression models.

In the study, 790 Scots pine boards with cross-section dimensions of 38 x 150 mm and length
between 3.4 m and 5.6 m were manually graded according to the preferences of a large-
volume customer, and also scanned and graded by an RBAG system calibrated for the same
customer. Multivariate models for prediction of board grade, based on aggregated knot
variables obtained from the scanning, were calibrated using partial least squares regression.

The results show that prediction of board grades by the multivariate models were more correct
than the grading by the RBAG system. The prediction of board grades based on multivariate
models resulted in 84% of the boards graded correctly, according to the manual grading, while
the corresponding number was 64% for the RBAG system. In a follow up grading test the
accuracy of the two systems were 95% and 81%, respectively.

Keywords: automatic quality grading, multivariate model, rule-based model, sawmill,
customer expert
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INTRODUCTION

The main problem in the manual grading of sawn timber is the high number of wood
characteristics that the grader has to judge during the few seconds the grader has to spend on
each piece of sawn timber. The grader needs to consider all visual defects on all sides of the
piece and relate that information to the grading rules in use, often also related to a specific
customer, and furthermore how any trimming options could be used to optimize the board value.
Gronlund (1995) showed that only about 57% of the sawn timber is graded equally by separate
graders using the same grading rules. On the other hand, this subjective grading method is
sometimes desirable by customers as its rules are an attempt to describe the product that is
demanded by the customer.

Overtaking this traditional manual grading method, since the last three decades, is the more
efficient and consistent rule-based automatic grading (RBAG) systems that Lycken (2006)
showed could replace manual graders for grading according to the Nordic timber grading rules
(Swedish Sawmill Managers Association 1994). These RBAG systems scan individual boards
from four directions and assign a grade using cameras, image processing and analysis, and per-
customer customizable grading rules. However, as it would be logistically impossible to have
an infinite number of grading rules, the Nordic timber grading rules were formulated in the
Nordic countries, although most sawmills use their own set of rules adapted to different raw
materials, board dimensions, markets, customers, and of course the fact of no sawmill being the
other alike.

The problem with these RBAG systems is, actually, the increasing importance of customization
of grading rules (European Confederation of Woodworking Industries 2004) in order to satisfy
the customers. RBAG systems have a lot of settings describing each grade and customizing
rules is a time-consuming process which often requires the customer's presence at the sawmill
and hence quickly becomes complicated. This leads to RBAG rules being seldom changed
(Lycken 2006; Lycken & Oja 2006). Another problem is that a board with good quality overall,
but with a few larger than specified defects, could be tolerated by a customer even if the RBAG
system deem it of a lesser grade and vice versa.

Berglund et al. (2015) combined the advantages of the subjective manual grading and RBAG
and introduced a so-called holistic-subjective automatic grading (HSAG) system, which leads
to the purpose of this study; a validation of the HSAG principle.

There has been several earlier attempts to industrialize an HSAG system, using neural networks,
self-organizing maps, and fuzzy logics, to automatically detect and classify board defects, as
well as to grade boards according to appearance (Labeda 1995; Kauppinen 1999; Kline et al.
2003; Niskanen 2003; Silvén et al. 2003; Breinig et al. 2015). One obstacle in reaching large
scale applications for these systems is the complicated procedure of changing and formulating
new grading rules as this require numerous strong examples of each new grade as well as for
different defect types (Kline et al. 2003).

A different approach to HSAG, earlier introduced by Lycken & Oja (2006), is to use
multivariate models. Berglund et al. (2015) used a partial least square (PLS) multivariate model
which, just as neural networks, has to be calibrated using a training set of manually graded
boards. A PLS based system is, however, easier to understand, validate and customize in
comparison to a neural network (Esbensen 2002) while also being robust to noise and can,
despite measurement errors, capture important systematics effects (Eriksson et al. 2006). A
measurement error in one or more defects does not have a large effect on a PLS model, which
is in contrast to an RBAG system which could decide the board grade based on a single
measurement error.
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Lycken & Oja (2006) showed that their PLS model was consistent with around 85% of manual
gradings that used the Nordic timber grading rules. This is considered fairly good in comparison
with manual grading. Lycken & Oja (2006) also concluded that if accurate PLS models are
obtained it is easier to customize grading rules to satisfy customers’ needs.

The study by Berglund et al. (2015), which is a continuation of Lycken & Oja (2006), found
that a PLS-based HSAG system could outperform the traditional RBAG system in terms of
board grading accuracy. The aim of this study was to validate the findings by Berglund et al.
(2015) and to investigate a PLS-based HSAG system as a complement for an RBAG system.

MATERIALS AND METHODS

As this is a validation study, this study was made to mimic the study by Berglund et al. (2015)
in order to make it possible to compare the results. The only difference between the two
studies was that this one uses a new set of boards, higher in numbers.

Grading rules

The focus of this study was the appearance grading of boards according to grading rules based
on the Nordic timber grading rules (Swedish Sawmill Managers Association 1994). These rules
describe four different board grades, namely A, B, C, and D, where grade A is the best, and
most valuable, and grade D the worst, and least valuable. Even though the Nordic timber
grading rules consider most wood features on a board’s surfaces, the most important rules are
regarding knots, as the size and distribution of knots are the most descriptive of the general
appearance of a board. This is the reason why this study only considered knots for the
development of HSAG models to predict board grade. A consequence of this choice, was that
grade D was not considered, as grade D is given to boards with one or several extreme wood
features and is not necessarily related to knot characteristics.

Materials

790 randomly selected Scots pine (Pinus sylvestris L.) boards from a sawmill in northern
Sweden were used. The board dimensions were 38 x 150 mm and originated from the two
outer center boards in the sawing pattern (38/50/50/38) x 150 mm. The boards varied
between 3.4 mand 5.6 min length.

Methods

The boards were manually graded into grades A, B, and C according to knots without trimming,
by an expert in customer preferences for the North African market and this expert was the same
person as in the study by Berglund et al. (2015). This was the reference grades for the boards.

All sides of the boards were scanned using one of the common RBAG systems in the market, a
Finscan Boardmaster (Finscan 2017). As in the manual grading, only knot parameters was
considered, and no trimming was allowed. The rules were, however, customized to the current
sawmill’s experience of customer preferences of the North African market.

Prediction models

During the same scanning process as in the previous section a total of 58 variables regarding
knots are extracted, using knot descriptive data from the RBAG system (Table 1). As knot
characteristics in specific sections of a board can be more or less important to customers, each
board was virtually divided into one, three, and five equally large sections (Figure 1), and the
variables were extracted for each section. Furthermore, the variables were extracted from the
pith and sapwood surfaces separately, but for the edge surfaces together. This resulted in 58 x
(1+3+45)x3=1566 variables in total for each board. The variables were used to train
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multivariate prediction models for the three grades A, B, and C according to customer
preferences of the North African market.

Table 1: The 58 variables (marked as x) related to knots that were extracted for each of the board surfaces.

Knot type

Variable Sound and dead  Sound Dead

Total no. of knots X X

Average knot size (mm) X X X

St. dev. knot size (mm) X X

Maximum knot size (mm) X X

Ratio Knot area (mm?) (%) X

Surface area (mm?)

Ratio sound knots (%) X

Ratio dead knots (%) X

No. of sound knots per m (no./m) X

No. of dead knots per m (no./m) X

Ratio of knots <9mm X X X

" 10-19 mm (%) X X X

20-29 mm (%) X X X
30-39 mm (%) X X X
40-60 mm (%) X X X
60—80 mm (%) X X X
280 mm (%) X X X

No. of knots <9 mm (no./m) X X X

" 10-19 mm (no./m) X X X

20-29 mm (no./m) X X X
30-39 mm (no./m) X X X
40-60 mm (no./m) X X X
60—80 mm (no./m) X X X
280 mm (no./m) X X X

Partial Least Square (PLS) regression was used to correlate the predictor variables (the 1566
variables described above) to each other. It is easy to control and change settings in a PLS based
HSAG system, thereby affect the quality and value yield. Such an HSAG system can be
complemented by an RBAG system with grading rules for specific defects, such as wane, pitch
pockets, or blue stain as desired.

Figure 1. Variables were extracted for (a) one, (b) three, and (c) five equally large sections along the board.

(a)

== - —
(b)

| = — - - —
(©

From the RBAG system, we extracted the 1566 predictor variables (X-variables) while dummy
variables for each board grade were used as response variables (Y-variables). Two separate PLS
regression models were then trained for board classification. The first, PLS model I, was used
to separate boards of grade C from boards of grade A or B while the second, PLS model 1, was
used to separate boards of grade A from boards of grades B or C. This means that models | and
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11 were both trained on two classes, Class | and Class Il, which are defined differently for each
model. These classes for each PLS model is shown in Table 2.

Using two models is sufficient to distinguish between three classes, and since it was showed in

preliminary tests to be more difficult to separate boards of grade B from boards of grade A or
C such a model was not used.

Table 2. Predefined classes for PLS models | and I1. A, B, and C are grades for sawn timber customized according
to preferences of a customer in North Africa.

Class | Class Il
PLS model | C A B
PLS model 11 A B,C

Using the two PLS models to predict the grade of boards gives a probability value for each
board to be of either grade A or C. A high probability value, i.e. = 1, indicates a high
probability of the board fitting that grade and vice versa. The natural delimiter for such a
probability value would be to choose a limit of 0.5, but it’s advantageous to choose a limit in
dialogue with the customer. For example looking at PLS model I, choosing a high limit value
would separate only the most distinct grade C boards from the rest, with a lot of grade C boards
being classified as of grade A or B — false positives. On the other hand, choosing a low limit
value would classify a lot of boards of grade A or B as boards of grade C — false negatives. For
this reason, limit values for the two models should be chosen to result in acceptable numbers
of false negatives, and false positives.

The two models were used to predict board grade according to the following decision tree,
which is illustrated in Figure 2.

(1) Does the PLS model I estimate for Class | ¥;, where i =1, ...,790, exceed a specified
threshold limit, i.e. 9; > L., Lc € [0,1], thenthe board is grade C, otherwise continue.

(2) Does the PLS model Il estimate for Class | ¥;, exceed a specified threshold limit, i.e.
$; > Ly, Ly € [0,1], then the board is grade A, otherwise continue.

(3) If the board is neither grade A nor grade C, then it is grade B
Figure 2. Decision tree using two PLS models for automatic grading of boards into grades A, B, and C.

From both the sawmill and customer’s perspective, grading a board of true grade C as a board

PLS model I
§ > Le,Le €0,1]

PLS model IT
v, > Ly, Ly €[0,1]

Board grade A Board grade B

of grade A or B is worse than grading a board of true grade A as a board of grade B or C. This
is the reason why prediction of grade C is performed first, as boards that are difficult to assess
are more likely to be assigned grade C than grade A or B in this way. This is also controlled by
adjusting the limits L. and L, for each model.

For any PLS regression model, the goodness of fit is given by the calculated coefficient of

5
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determination (R?) and the goodness of prediction by the Q2-value. The Q%-value is based on
cross-validation (Martens & Naes 1989). Cross-validation means that n-models are created,
and each excluding 1/n of the observations when creating a training set to build the model on.
Each model can then be tested on the observations that were excluded when building the model.
These excluded observations are called the test set. The value of Q? represents the proportion
of variance in y-values in the test sets that is explained by the model. This means that Q? is a
measure of the model’s ability to predict new observations, which are observations that were
not included when building the model.

To analyze and verify the grading performance of the two PLS models, all 790 boards were
graded according to the procedure described in Figure 2, using the limit values L, = 0.43, and
L = 0.5 — aiming at the same grade distribution found by the customer expert prior to the
model establishment. These limits are used both for the study and follow-up grading test.

Follow-up grading

To simulate a customer receiving a package of boards and inspecting his or her purchase by
validating the board grades, the same expert as before was instructed to do a follow-up grading
test on six different groups of boards. These groups represent the three different grades A, B
and C assigned when using the two different grading strategies RBAG and HSAG. To ensure
the expert is not biased, the follow-up grading was performed without the expert knowing which
grading strategy had been used for each group.

Out of the original 790 boards, 395 were available for the follow-up test and boards were
selected to the six groups by the following procedure:

1. randomly select one board graded by RBAG as grade A and assigns it to group 1,
2. randomly select one board graded by HSAG as grade A and assigns it to group 2,
3. randomly select one board graded by RBAG as grade B and assigns it to group 3,
4. randomly select one board graded by HSAG as grade B and assigns it to group 4,
5. randomly select one board graded by RBAG as grade C and assigns it to group 5, and
6. randomly select one board graded by HSAG as grade C and assigns it to group 6.

As long as boards remained of each grade from each grading strategy, steps 1-6 were executed
and repeated. Once there were no more boards of a specific grade from any of the two grading
strategies the sorting procedure skipped steps including that grade while the remaining steps
were executed before continuing. This was to ensure each grading strategy had equally many
representatives for each board grade in the test.

The first group that was completely sorted according to the above-described procedure was the
RBAG grade A group, which resulted in 16 boards in groups 1 and 2. Then procedure step 3-6
was repeated to fill up the groups 3-6 with 35 boards in each. The number of boards in each
group is shown in Table 3.
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Table 3. The amount of randomly selected boards for each grade and sorting system used in the follow-up grading
test.

Group Grading Grade No. of boards
1 RBAG A 16

2 HSAG A 16

3 RBAG B 35

4 HSAG B 35

5 RBAG C 35

6 HSAG C 35

7 HSAG A 15*

Total 187

*All remaining boards in the test set that was assigned grade A by HSAG were added to an additional group 7.

As the RBAG resulted in few boards of grade A, groups 1 and 2 has fewer members, but as
grade A is in general of great importance for sawmills, all remaining boards graded as grade A
by the HSAG was added to an additional group 7.

The expert visually inspected all boards. To increase objectivity, five boards from each group
were inspected in sequence before considering the next five boards from the next group, and so
on until all boards had been inspected.

The expert’s opinion on each board was documented by the opinions below, with one
mandatory (1-3) and one optional complementary (4-5) opinion:

1. The board is graded correctly.
2. The board is of a lower grade.
3. The board is of a higher grade.
4. The board grade is a borderline case of being of a lower grade.
5. The board grade is a borderline case of being of a higher grade.

RESULTS AND DISCUSSION

Out of the 790 boards in this study, the expert graded 17% as of grade A, 51% as of grade B,
and 32% as of grade C, Tables 4 and 5. This reference grade distribution is compared to the
corresponding grade distribution in Berglund et al. (2015) of 24% as of grade A, 44% as of
grade B, and 31% as of grade C. These different reference grade distributions will most likely
not affect the comparison between the two studies.

When evaluating the customer satisfaction, a good measure is the share of boards that is graded
correctly or where the grade has been underestimated. For a customer, a correct grade is the
expected while an underestimated grade would mean that the customer purchases boards of a
perceived higher grade to a lower price.

Rule-based automatic grading (RBAG)

The RBAG resulted in the grading distribution shown in Table 4, where the RBAG is compared
to the expert’s grading of the 790 boards. Out of these 790 boards, 64% were graded equally
by the expert and the RBAG system, which is very consistent with the corresponding 63% in
the study by Berglund et al. (2015). This is a good indication of the consistency of RBAG,
which is one of the reasons mentioned in the introduction to why RBAG has replaced manual
grading at sawmills.
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In Table 4 it is seen that the RBAG system is underestimating the number of quality grade B
boards by 17%, while consequently overestimating the number of boards of the other two
grades, A and C. The same result was found in the study by Berglund et al. (2015). RBAG
graded 86% of boards correctly or with an underestimated grade. However, of the remaining
14% of boards graded too high, 10 percentage points of those came from boards of grade B or
C and were wrongly graded as grade A. As stated in the preamble of the results and discussion
section, this is not appreciated by customers. On the other hand, of the 86% correctly or
underestimated graded boards, 22 percentage points comes from underestimated boards, which
hurts revenues at the sawmill.

When comparing with the RBAG case of the study by Berglund et al. (2015) it is clear that not
much has changed. One difference is that in this study the proportion of boards graded correctly
as of grade A has dropped 11 percentage points while the other measurements stayed basically
the same. As every other grading accuracy measurement of the RBAG systems of the two
studies are basically the same, it is interesting to note this 11% drop in accuracy when it comes
to grade A. This could be for any number of reasons but is worth remembering for future
comparisons.

Table 4 The number and percentage of the 790 boards in each grade by rule-based automatic grading (RBAG)

column-wise and by the customer expert row-wise. For the different grades according to the automatic grading,
the consistency with the customer expert was also calculated.

RBAG
Grade A B C Total
A 93(12%)  38( 5%) 4( 1%)  135( 17%)
Expert B 700 9%) 197(25%) 133(17%) 400( 51%)
C 8( 1%) 35( 4%)  212(27%)  255( 32%)
Total 171(22%) 270(34%) 349(44%) T790(100%)
Correct grade total: (93+1974212) /790 = 64%
Correct or underestimated grade total: (93-+38-+4+197+133+212) /790 = 86%
Correct grade A: (93)/171 = 54%
Correct or underestimated grade B: (197+38)/270 = 8%

Holistic-subjective automatic grading (HSAG)

For PLS model 1, separating boards of grade C from grades A and B, the R?-value was 0.61 and
the Q?-value was 0.49. This means that 61% of the variance in grade is explained by the model
and 49% can be predicted according to cross-validation. The R?-value for PLS model Il was
0.55 and the Q?-value was 0.44.

Figure 3 shows an observation score plot of the first 2 out of 3 principal components. Therein
is a visual indication of the separation problem at hand, where the limit of PLS model | would
be represented by a line trying to separate “triangles” from the rest, while the corresponding
limit for PLS model Il would be a line trying to separate “squares” from the rest.

Choosing threshold limits for board grade separation in an HSAG system is a trade-off between
increased sawmill revenues and customer satisfaction. How much the share of higher grades
can be increased to improve sawmill profitability depends also on the current market situation.

Table 5 show that the proportion of correctly graded boards in total for the HSAG was 84%
with a delivered grade distribution of 16% grade A, 54% grade B, and 30% grade C, which was
very close to the reference grading. HSAG produced a total board grade correctness of 84%
which was in similar level of what Berglund et al. (2015) did present (78-87%) when two
different sets of limits L, and L. were tested.
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Out of all boards graded as of quality A, 81% were correctly classified and only 3 boards of
grade C boards were given grade A.

As for the trade-off between sawmill and customer satisfaction, the HSAG of this study showed
a correct or underestimated grade in 91% of the grades of which 7 percentage points of grades
were underestimated. Similarly, for the HSAG model Il by Berglund et al. (2015); correct or
underestimated grade in 92% of the board grades of which 5 percentage points of board grades
are being underestimated. Both studies (models) did overestimate 9% of board grades.

When comparing the RBAG model with the HSAG model, there was an increase in total
grading accuracy from 64% to 84% with the most significant difference being the ability to
distinguish boards of grade A. Out of all the boards graded as grade A by the HSAG model,
81% matched the reference grade A, while only 54% of boards graded as A by the RBAG
model matched the reference grade A.

Figure 3. Score plot showing the different grades, according to the customer expert, and their formation in the
coordinate system of the two first principal components, t[1], t[2]. Squares = grade A, circles = grade B, and
triangles = grade C. Included is also a tolerance ellipse based on Hotelling’s (1931) T2.

Table 5. The number and percentage of the 790 boards in each grade by holistic-subjective automatic grading
(HSAG) column-wise and by the customer expert row-wise. The threshold limits used for separating board grades
were La=0.43 and Lc = 0.5. For the different grades according to HSAG, the consistency with the customer expert
was also calculated.

Follow-up test

HSAG
Grade A B C Total
A 105(13%)  30( 4%) 0( 0%) 135( 17%)
Expert B 22( 3%) 353(45%)  25( 3%) 400( 51%)
C 3( 0%) 44 6%) 208(26%) 255( 32%)
Total 130(16%) 427(54%) 233(30%) T790(100%)
Correct grade total: (105+353+208) /790 = 84%
Correct or underestimated grade total:  (105+30+0+353+25+208)/790 = 91%
Correct grade A: (105)/103 = 81%
Correct or underestimated grade B: (353+30)/427 = 90%
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According to Table 6, the RBAG method graded boards with 81% accuracy. Quality A grading
was done 100% correct with 27% (4 boards) being borderline lower, while quality C and B
grading were done with 76% and 77% correctness.

For the HSAG, Table 7 shows a grading correctness of 95%. Again, quality grade A was done
100% correct and with overall lower number of borderline cases.

When comparing Table 6 and 7, the follow-up test confirms the results earlier shown in Table
5, and the results of Berglund et al. (2015), the HSAG method outperforms the RBAG method.

To do an as thorough investigation of grade A as possible a seventh group was inspected in the
same way. This group of boards contained all additional boards classified as grade A by the
HSAG system. Of these total 15 additional boards only one was put in a lower class by the
customer expert, which is consistent with the shown 95% grading accuracy. Correctly grading
more boards of grade A is of course appreciated by both the sawmill and the customer.

Table 6. The result of a customer expert inspection of the three groups of randomly selected boards representing
grades A, B, and C according to an RBAG grading system.

*One board each in grade Aand C was rejected due to an uncertainty in board number identification.

Table 7. The result of a customer expert inspection of the three groups of randomly selected boards representing
grades A, B, and C according to HSAG, using L, = 0.43 and L. = 0.5/

RBAG Grade

A B C Total
Correct 15(100%) 27(77%) 26(76%) 68(81%)
Lower o 0%) 3( 9%) - 3( 4%)
Higher o 5(14%)  8(24%) 13(15%)
Total 15% 35 34%* 84

Borderline lower 4(27%) 3(9%) 0(0%) 7(8%)
Borderline higher 0( 0%) 2(6%) 2(6%) 4(5%)

HSAG Grade

A B C Total
Correct 16(100%) 34(97%) 32(91%) 82(95%)
Lower o 0%) 1( 3%) - 1( %)
Higher - 0(0%)  3(9%)  3( 4%)
Total 16 35 35 86
Borderline lower 1( 6%) 1(3%) 0(0% 2(2%)

)
Borderline higher 0( 0%) 3(9%) 1(3%) 4(5%)

CONCLUSIONS

In this study, a partial least squares multivariate regression based holistic-subjective automatic
grading (HSAG) method was used to grade sawn timber based on knot distribution. The method
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was compared with a conventional rule-based automatic grading (RBAG) system and both
systems used an expert on board grade quality for the North African market as reference.

The HSAG model was able to grade boards with greater accuracy than the RBAG method. The
RBAG system graded boards with about 65% accuracy and the HSAG model about 85%
accuracy. This difference in grading accuracy also showed in the follow-up test where the
RBAG managed a total correctness of about 80% while the HSAG managed 95%.

Other than being more accurate in its quality grading, an HSAG system separates quality grades
by a single limit, which directly balances sawmill revenues vs. customer satisfaction of the
grading results. This can be seen as a strength of an HSAG system because of the difficult work
of defining new grades or changing existing ones of the conventional RBAG systems.

11
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ABSTRACT

Rule-based automatic grading (RBAG) of sawn timber is a common type of sorting system used in
sawmills, which is intricate to customise for specific customers. This study further develops an
automatic grading method to grade sawn timber according to a customer’s resulting product
quality. A sawmill’s automatic sorting system used cameras to scan the 308 planks included in the
study. Each plank was split at a planing mill into three boards, each planed, milled, and manually
graded as desirable or not. The plank grade was correlated by multivariate partial least squares
regression to aggregated variables, created from the sorting system’s measurements at the sawmill.
Grading models were trained and tested independently using 5-fold cross-validation to evaluate
the grading accuracy of the holistic-subjective automatic grading (HSAG), and compared with a re-
substitution test. Results showed that using the HSAG method at the sawmill graded on average
74% of planks correctly, while 83% of desirable planks were correctly identified. Results implied
that a sawmill sorting station could grade planks according to a customer’s product quality grade
with similar accuracy to HSAG conforming with manual grading of standardised sorting classes,
even when the customer is processing the planks further.

KEYWORDS

Sawn timber; visual grading;
customer adoption;
discriminant analysis

Introduction grade of sawn timber that the sawmill is selling - with of
course some error margin. Individual customer’s needs may
however not at all be in line with these standardised grades
with their corresponding pricing. Based on the standardised
grading rules, industrial customers can sometimes request a
custom-made grade that follows a different set of rules.
However, such a custom order is complicated to produce

(Lycken and Oja 2006), because:

During the last decades, automatic grading of sawn timber
has replaced manual grading in many sawmills in Sweden,
as well as in many other countries around the world, and
it has improved the grading accuracy significantly compared
to manual grading (Lycken 2006). The greater grading accu-
racy gives a sawmill greater control to make conscious
decisions about the operations in the entire product line.
The most common automatic grading approach is rule-
based automatic grading (RBAG), which is a system that
uses grading rules (limits) for detected features or measured
variables, e.g. maximum size of dead knots. Rule-based
systems have been used in a number of applications
throughout the sawmill process, e.g. Lycken (2006) who
used a straight-forward RBAG approach to grade sawn
timber according to the Nordic Timber Grading Rules

(I) Itis difficult for a customer to describe its subjective view
of the desired plank quality in a way that can easily be
defined in objective grading rules.

(I The number of variables that can be controlled to specify
a grade is often more than enough to make customisa-
tion complicated.

(Swedish Sawmill Managers Association 1994), and Kline
et al. (2003) who used a multi-sensor set-up with fuzzy-
logic for automatic grading of hardwood lumber. Several
grading systems in the industry use some application of
rule-based, or in general objective, grading, e.g. the auto-
matic grading and sorting system by FinScan used in this
study (Anon 2018).

RBAG is objective by nature and has the strength of being
able to strictly follow standards, such as Swedish Sawmill
Managers Association (1994), which in detail specifies the

Since a rule-based system needs a conforming and delib-
erate set of rules to result in a concise grading, these pro-
blems make customisation troublesome. Furthermore, a
fine-tuning process by trial and error can be costly as the
results of a custom grading attempt cannot easily be vali-
dated before the customer receives a delivery or even
before the customer produces further products from the
sawn timber. Custom-made grading settings are therefore
seldom made due to the complicated process of adjusting
the grading rules according to the customer’s needs, even
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though they could be beneficial to both sawmill and
customer.

This customisation difficulty of RBAG indicated the need
for a holistic-subjective automatic grading (HSAG) method-
ology; i.e. a grading that incorporates subjective grading of
the entire piece. The grading method developed in this
study is an extension of the work by Lycken and Oja
(2006) and Berglund et al. (2015), the latter validated by
Olofsson et al. (2017), both using a multivariate partial
least squares regression (PLS Geladi and Kowalski 1986)
based HSAG to grade sawn timber in conformity with
manual grading. These studies showed that PLS-based dis-
criminant analysis (PLS-DA) HSAG is superior to RBAG
when conforming with manual grading. Multivariate based
classification has similarly been used by Broman (2000)
and Breinig et al. (2015) to classify wood surfaces by their
appearance with regards to knots. Oja et al. (2003, 2004)
also investigated PLS regression to grade logs based on
the grade of the centre yield, and Hagman and Grundberg
(1995) used multivariate image analysis to classify knots
and wood surface features in X-ray computed tomography
images. Using HSAG addresses the two specified difficulties
with RBAG:

() The customer needs only to specify whether or not they
want that piece of sawn timber — no objective descrip-
tion is necessary.

(I) The amount of available variables in the scanner is irrele-
vant as the HSAG method uses multivariate PLS-DA.

The customer will specify whether or not a piece of sawn
timber is desirable by looking at the quality outcome of that
piece to focus the automatic grading on product quality
instead of the customary sawn timber quality. The use of
PLS-DA frees the user from manually calibrating a large set
of grading rules and instead rely on a computer to automati-
cally determine the relationship between measured variables
and the desired grading outcome.

The goal of the first part of this study was to investigate the
possibilities of further expanding the use of PLS-based HSAG
to predict not only a plank’s standardised sorting grade at the
sawmill but whether the plank will result in a product of desir-
able quality for the customer. As the collaborating industrial
planning mill customer splits each plank into three boards
before planing and milling, only two out of six flat faces of
the boards are visible to the automatic scanner for grading
at the sawmill. The splitting and further processing of the
wood material might make the correlation between scanner
measurements and product grade diffuse, especially for the
centre plank of the splitting.

An automatic scanning system in a sawmill is a calibration-
sensitive system located in a generally dusty environment,
which raises the question of whether the variable-grade
relationship can be found reliably. Accordingly, the goal of
part two of this study was to investigate the robustness of
PLS-based HSAG grading towards distortions of the measured
input variables.

By scanning a set of planks, storing the measured feature
variables, and training a PLS model against the resulting
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product grade from the collaborating industrial customer,
the sawmill will be able to grade planks by its customer’s
product grade reliably, and the customers can purchase
sawn timber that is suitable for its intended products.

Materials and methods
Material

A total of 308 Scots pine (Pinus sylvestris L.) planks were
studied at Kage sawmill and Lundgren’s industrial planing
mill in northern Sweden. The planks were sawn from top-
logs from the sawmill’s log sorting station. Each top-log was
cant sawn and resulted in the centre yield of two planks of
50 by 150 mm in cross-section and between 3.5 and 5.7 m
in length. The planks were dried to 14% moisture content
before being scanned at the sawmill's dry sorting station.
The scanner, grader, and sorter used was a Boardmaster by
FinScan (Anon 2018) - the entire system will be referred to
as Boardmaster.

Data collection at Kage Sawmill

The test material came from logs that originated from
different logging areas. The logs were sorted to a suitable
top diameter class for the plank dimensions requested by
the customer. Following conventional sawing and drying
operations, two packages of approximately 150 dried planks
were selected for the study. The planks were marked with
an ID number for traceability throughout the study before
being transported cross-wise through the Boardmaster at
Kége sawmill. The Boardmaster used cameras to scan,
detect, and measure the planks’ features. Each feature was
described by size, position, and an attributed class - e.g. the
size and position of a knot that was classified as a dead
knot. All the planks were delivered to Lundgren’s planing
mill for processing and grading according to Lundgren’s
product requirements.

The feature variables measured by the Boardmaster were
the foundation of the grading and they were therefore care-
fully selected based on the desired grading outcome. A Board-
master can detect plank features such as knots, bark pockets,
rot, discolouration, cracks, wane, warping, and so on. Knots
are the most important features affecting the general appear-
ance of sawn timber, which is why most of the grading rules in
Swedish Sawmill Managers Association (1994) are related to
knots. Bark pockets are also important to the planing mill
due to the splitting and milling process. Therefore, features
related to knots and bark pockets were specifically selected
for this study, due to their importance for the planing mill
and the difficulty in holistically describing them for the
entire piece. All other features were ignored throughout this
study, both at the sawmill and planing mill.

Data collection at Lundgren’s planing mill

At the planing mill, each plank was split into three boards.
Each board was planed, milled, and manually graded by the
planing mill staff: grade A for the desired higher quality
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Table 1. Complete description of all the x-variables used in the study, together forming the explanatory X-matrix.

# Variables Defect types Plank faces Sections
1 Total Number of defects Sound knot Inner face 1
2 Avg. defects size (mm) Dead knot Outer face 3
3 Std. dev. of defects size (mm) Sound or dead knot  Both edges 5
4 Maximum defects size (mm) Bark-ringed knot
5 Sum of defect area (mm?  Rotten knot
6 Ratio of defectarea (%) Bark pocket
7 Ratio of sumofdefectarea (%)
8 Number of defects per metre (m™)

Ratio of defects of sizes:?
9 <9mm (%)
10 10—-19mm (%)
1 20—29mm (%)
12 30—39mm (%)
13 40—59 mm (%)
14 60—79mm (%)
15 > 80mm (%)

Number of defects

per metre:?

16 <9mm (m™)
17 10-19mm (m™)
18 20-29mm (m™)
19 30-39mm m™)
20 40-59mm (m™)
21 60—79mm (m™)
22 >80mm (m™)

22 variables X 6 defect types x 3 sides x 9 zones = 3564

2This a header and does not count as a variable.

Notes: Each variable in the first column was replicated for each entry in each of the other columns. The number of
entries of each column is shown at the bottom where the total number of variables is the multiple of the values in

the bottom row, i.e. 3564 variables.

product or grade B for an undesired lesser quality product.
This triplet of board grades from a plank defined the plank’s
grade by majority as A or B as desirable or undesirable by
the planing mill. A desirable plank was a plank that produced
the quality yield of two or three quality A boards and was
given the grade A, and a plank that produced one or zero
quality A boards, was given the grade B. Digital labels associ-
ated with each plank tracked the triplet of board grade results
from each plank.

Construction of regression components

The outcome targeted in this study was a grading model that
determines whether or not a plank is of grade A according to
the planing mill, i.e. whether or not the planing mill will be
able to produce a majority of quality A boards from the
plank. Such a grading model was created using an HSAG
method adapted specifically for the product produced at
the planing mill. The HSAG was implemented as multivariate
PLS regression discriminant analysis (PLS-DA), and the expla-
natory X-matrix of plank measurements and response-grade
y-vector were created from the data collection as follows.

Explanatory X-matrix

Since the size, position, and feature type measured by the
Boardmaster are not sufficiently descriptive to objectively
capture the subjective quality judgement of the customer,
the Boardmaster’s variable resolution was increased. Using
knot and bark measurements from the Boardmaster, an
additional software tool was used to create the set of 3564

variables, shown in Table 1 (see Berglund et al. 2015). The
twenty-two variables in the first column were created for
each defect type listed in the second column, measured sep-
arately for each face-entry in the third column, and replicated
in each of the one, three, and five longitudinal sections in the
fourth column (see Figure 1). An example of such a variable
could read as follows, using the second entry of each
column; “The average dead-knot size on the outer face of
the plank in the longitudinal section two out of three”. The
three plank-face categories were created to capture the
different importance of the different faces, with both edge-
faces merged as they are similar and equally important in
the milling process. Each plank was copied virtually three
times and divided into equal longitudinal sections to
capture the different importance of the plank ends or
centre. The first plank had one section for the entire plank,
the second plank had three sections, and the third plank
had five sections, totalling to nine sections.

The matrix of all these variables for each plank in the inves-
tigation was the explanatory X-matrix used in the study. The
construction process of the matrix was undertaken after the
scanning procedure at the sawmill. Possible detection errors
by the Boardmaster scanning system was not considered.

Response y-vector

The response variable y for each plank was a binary represen-
tation of the desirability for the planning mill. All planks
formed the y-vector used for the PLS regression. A desirable
plank (grade A) was represented by 1 and undesirable
(grade B) by 0.



WOOD MATERIAL SCIENCE & ENGINEERING @ 431

Z

Figure 1. lllustration of the virtual copies of each plank (Berglund et al. 2015).

Table 2. The resulting numbers of planks with labels AAA, AA, BB, or BBB and
their respective grade A or B.

Grade A Grade B

Label AAA AA BB BBB
Number 126 73 43 66

Note: A total of 199 grade A planks and 109 grade B planks.

Since each plank resulted in three boards, each plank was
digitally labelled AAA, AA, BB, or BBB based on the quality of
boards produced - omitting B and A from the two mixed
labels AAB and BBA to keep the labelling clean, as shown in
row one of Table 2. This labelling makes it possible to investi-
gate classification difficulties with borderline cases, eg.
whether a BB plank should be assigned grade B or grade A.

From the 308 planks, 924 boards were produced and
graded. The resulting quality distribution of the complete
data set is shown in Table 2, which shows the numbers of
planks labelled AAA, AA, BB, and BBB, where the first two
where given the grade A and the last two the grade B.

Implementation and evaluation of PLS classification
models

With such a large explanatory X-matrix (308 by 3564 in size)
and a single binary y-vector (Y-matrix 308 by 1 in size), PLS-
DA was used using the SIMCA 14 software (Anon 2019). The
strengths of PLS regression are in its ability to find the stron-
gest correlation between the explanatory variables in X and
separation of classes in the response variable(s) in Y. An auto-
matic algorithm in the SIMCA 14 software was used to calcu-
late one to several latent variables by linearly combining the
explanatory variables in X that maximised the separation of
classes in Y. PLS is resilient to noise and can handle many,
possibly strongly correlated, variables, which is the case in
this study. There is also a large toolbox for inspecting a PLS
prediction model, making models easy to understand and
adjust. For a more thorough overview of PLS Regression, see
Geladi and Kowalski (1986) or Wold et al. (2001).

Prediction models can be evaluated by considering the
results of using a trained model to predict a test set, which
provides a measure of the grading accuracy and stability of
the model. Ideally, when training and testing a prediction
model, one data set is used for training (fitting) and another
data set is used to test the prediction accuracy of the
model. If only one data set is available, and it is large
enough, it can be artificially split into two sets, in which
case, the test set is usually a small sample of the whole data
set, e.g. 20% of the observations. The benefit of training and

testing the model on different data is that you can measure
how the model copes with predicting previously unseen
objects. The downside to such a split of the data set is that
the model is trained on a smaller data set compared to a
model trained on all available data and is therefor a weaker
discriminator, as well as having only a relatively small test
set which might not be completely representative of the
entire data set (nor the entire population).

A common approach for dealing with data sets which are
too small to be split into two sets is re-substitution (self-pre-
diction); to train a prediction model based on the entire
data set and then predict the entire data set. The benefit of
this method is that the data set is re-purposed for both train-
ing and testing, artificially doubling the size of the data set.
However, evaluating such a model is difficult as measure-
ments of how such a model would cope with an unknown
test set are only indicative. Re-substitution testing is generally
known to be optimistic (biased) of a prediction models per-
formance as it is optimised for the current test set. The classifi-
cation performance of PLS-based HSAG by re-substitution
testing will in this study serve as supplementary results, due
to the somewhat small data set.

The data set used in this study was complex, with 3564 x-
variables in an attempt to objectively describe the natural
variation of knots and bark in a plank in relation to a custo-
mer’s product quality by a binary response y-variable. Further-
more, the relationship between x-variables and plank grade
was sometimes ambiguous, due to e.g. desirable sound
knots cracking in the planing or milling process by chance.
Because of this complex problem, and the continuous flow
of planks through a sawmill sorting station, it was important
to test the model on an unseen test set as this is its intended
use. However, as the data set only contains roughly 100 grade
B planks (Table 2), which is the estimated minimum of
required observations per grade for PLS-based grading
according to (Lycken and Oja 2006), and since the data is so
complex, it can be difficult to evaluate the model based on
a single test set due to the inherent variability of the data.
To circumvent this complexity as much as possible, and to
benefit from both of the methods mentioned above, 5-fold
cross-validation was here adopted and substituted with a
re-substitution test to evaluate the grading accuracy and stab-
ility of the PLS-based HSAG method.

Defining training and testing data sets

To make a comprehensive evaluation of the PLS-based HSAG
method used in this study 5-fold cross-validation was used
and compared with re-substitution. Based on the size of the
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data set, and the limited numbers of grade B planks (Table 2),
the data was randomly re-sampled five times, which were
called re-samplings 1-5. Each re-sampling resulted in a
unique test set of 59 boards defined as the closest fit to one-
fifth of the entire data set that followed the labelled quality dis-
tribution in Table 2, while 249 planks remained for use as the
training set in each re-sampling. Theoretically, a completely
random selection of test set members would follow the
same quality distribution, but with the low number of grade
B planks this enforcement was made in order to maintain a
fair proportion between the training and the test sets for
each label-class of planks during the cross-validation. This
guided random selection is especially important with the
ambiguity problem mentioned in the previous section. Each
test set was unique in the sense that each observation (with
some round-off error) was a part of one test set only. One
PLS-DA model was made for each of the five re-samplings
in addition to the model created from the entire data set for
the re-substitution. The comparison between the prediction
results of each of the five re-samplings, together with their
average behaviour, and the re-substitution results gave
measures of the prediction accuracy and stability of the
methodology.

PLS-DA classification

A PLS-DA model was linearly fitted to maximise the corre-
lation between the explanatory variables in X and the separ-
ation of classes in Y in the training data set. When X
measures observations from a test set, the multivariate
regression line is used to estimate the observations’ response
Y. These predicted values usually comes in the form of a value
approximately in the range [0, 1]°. This estimate can be inter-
preted as a probability of the new observation belonging to
grade A, represented by 1. To complete the classification, a
threshold is selected, e.g. 0.5, which defines any observation
with an estimated response higher than 0.5 as grade A, other-
wise B. The choice of threshold is in this study chosen to try to
maximise the classification accuracy, although a different
threshold might be desired by the sawmill and customer
due to e.g. adequate delivery volume requirements. By inves-
tigating the PLS-DA regression of the training data, the
threshold was chosen to separate the two grades optimally
for the training sets of the cross-validation models and for
the re-substitution model. For each prediction model, the
choice of threshold is conceptually visualised by the choice
of threshold for the re-substitution, shown in Figure 2. The
resulting model and threshold from the training set are

Table 3. Variables used to evaluate the grading outcome of the tested models.

Variable

name Description

A-correct The proportion of quality A planks correctly graded as grade A.

B-correct The proportion of quality B planks correctly graded as grade B.

Tot-correct The proportion of correctly graded planks in total.

Delivered The proportion of scanned planks delivered from the sawmill,
i.e. planks graded A, correct or not.

A-purity The proportion of the planks delivered to the planing mill that

were of grade A.

then used to grade the separate test set. This procedure
was performed for all re-sampling models. As the re-substi-
tution model was trained on the entire data set, there was
no separate test set, and it is easy to see that the optimal
threshold for the re-substitution might not be the optimal
threshold for a new separate test set. Measurements of a
model’s classification performance, based on re-substitution,
are hence optimistic (data set bias) to some degree. Such
optimism (bias) can be extremely prominent in very small
data sets with randomised class belonging (e.g. randomised
plank grade) (Westerhuis et al. 2008) but becomes far less
prominent for larger data sets (Lance et al. 2000) and less
prominent still with non-randomised class belonging. For
the complex data set of 308 planks in this study, the classifi-
cation performance measured by re-substitution could
approximate the upper limit for classification performance,
using the presented scanner system and implementation
of HSAG.

Classification evaluation procedure
With six PLS models, one for each of the five re-samplings and
one for the re-substitution, six test sets were graded. The

Table 4. Misclassification table (confusion matrix) of the average prediction
results of 5-fold cross-validation, each model predicting their corresponding
test sets at a threshold between 0.49-0.60, which on average was 0.55.

Cross-
validation
Predicted
Label Number A B Correct

‘5 < AAA 24 21 3 87% o
g AA 14 1 3 76% 8%
22
£g BB 8 5 3 40% o
28 BBB 13 4 9 7% 9%
S Totals 59 41 18 74%

Notes: Predicted grades were determined at the sawmill, and observed grades
at the planing mill. Predicted number of planks are rounded to whole planks
from the five re-samplings.
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Figure 2. Observed vs predicted grade plot of the re-substitution test, showing the spread and separation of the predicted grade of all planks along the horizontal
axis and the observed (true) grade on the vertical axis. Grade A planks are represented by 1 and grade B by 0. A threshold on the horizontal axis defines observations
above the threshold as being of grade A and vice versa. The optimal class-separating threshold 0.56 is marked as a red vertical line. This figure is conceptually the

same for each re-sampling model of the cross-validation.



Table 5. Misclassification table (confusion matrix) for the prediction results of
the re-substitution test, classifying the entire data set with an optimal class-
separating threshold of 0.56.

Re-
substitution
Predicted
Label Number A B Correct

5 |« AAA 126 18 8 9%  goo
53 AA 73 59 14 81%
2
23 BB 43 17 26 61% o
235|* BBB 66 13 53 g0 %
= Totals 308 207 101 83%

Note: Predicted grades were determined at the sawmill, and observed grades at
the planing mill.

grading accuracy was investigated with the five measure-
ments described in Table 3. Note that A-correct, B-correct,
and Tot-correct all show different proportions of correctly
graded planks, which is the correctness percentage to the
right in the rightmost column in Tables 4 and 5.

Results

To evaluate the grading accuracy and reliability of multi-
variate PLS regression as a method to predict the yield of a
customer’s product quality, the prediction results of 5-fold
cross-validation are presented, supplemented with results
of a re-substitution test. For the five re-sampling models
one or two (once) PLS components were used during mod-
elling, and for the prediction model used for the re-substi-
tution test one PLS component was used. The number of
PLS components used was for all models determined auto-
matically by cross-validation by the SIMCA 14 software
used, to prevent over-fitting the prediction models to the
training set.

Figure 2 shows the observed vs predicted grade for the
re-substitution, where the prediction model was trained
and tested on the entire data set. High-density groupings
of observations are evident as black regions with the
optimal class-separating threshold highlighted. Conceptually,

A-correct (cross-validation)
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this result was the same for each test set in the 5-fold cross-
validation, apart from the thresholds which were chosen
before testing.

Table 4 shows the average prediction results of the 5-fold
cross-validation, with the average class-separating threshold
0.55 (0.49-0.60), which on average classified 74% (61-80%)
of the planks correctly. Table 5 shows the re-substitution pre-
diction results using the optimal class-separating threshold of
0.56, where 83% of the planks were correctly graded.

The measurements from Table 3, A-correct, B-correct, and
Tot-correct, were measured vs the threshold value and com-
pared in Figure 3, which show the average prediction
results of the cross-validation, and the prediction results of
the re-substitution. The average threshold of the cross-vali-
dation and the optimal threshold of the re-substitution are
close to the same value, 0.55 and 0.56 respectively. The
average threshold of the cross-validation resulted in 74% cor-
rectly graded planks, which is close to the peak Tot-correct
value of 76% at the on average optimal threshold 0.52
(Figure 3).

Figure 4 shows Tot-correct vs threshold for each of the five
re-samplings, including their average. All re-samplings, except
re-sampling 3, follows the average trend quite closely. Each
prediction model for each re-sampling had a threshold
between 0.49 and 0.60 and classified between 61% and
80% of planks correctly, which on average classified 74% of
planks correctly at the average threshold 0.55.

To follow up the implications of using PLS-based HSAG
for the sawmill and planing mill, Figure 5 show prediction
results using the measurements from Table 3 Delivered, and
A-purity, for the average of the cross-validation models and
the re-substitution respectively, and again they showed
similar behaviour.

Discussion

The first part of this study indicated the potential at a multi-
variate PLS-regression-based HSAG method to an industrial
sawmill’s dry sorting station, even when the scanned sawn

—B-correct (cross-validation) =——Tot-correct (cross-validation)

A-correct (re-substitution) ~ +ee++ B-correct (re-substitution) ~ +ee* Tot-correct (re-substitution)
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Figure 3. Average prediction results of the 5-fold cross-validation and for the re-substitution, showing the dependence of the measurements A-correct, B-correct,
and Tot-correct on the threshold value. For the average of the cross-validation, the measurement Tot-correct showed 74% correctly classified planks at the threshold
0.55 (the optimal threshold was on average 0.52 where Tot-correct was 76%), while for the re-substitution the value of Tot-correct was 85% at the optimal threshold

0.56.
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timber was subsequently split into three boards for further
processing. On the basis of the average of the 5-fold cross-
validation, 74% of all the planks were correctly graded
while 86% of grade A planks were correctly identified at
the average class-separating threshold of 0.55 (Table 4).
Using the optimal class-separating threshold of 0.56 for the
re-substitution model, 83% of all the planks were correctly
graded and 89% of grade A planks were correctly identified
(Table 5). Both the average cross-validation results and the
re-substitution results showed in general a very similar
behaviour for all measurements used (Table 3), as shown in
Figures 3 and 5.

The similarity of the grading accuracy measurements at
similar threshold values in the two investigations indicates
that the product adapted HSAG method can grade planks
according to customer product quality yield. This level of pre-
diction accuracy is comparable to that achieved in previous
work on multivariate-based HSAG grading; Berglund et al.
(2015) showed, using re-substitution, a prediction accuracy
of 76% and 87% for two different thresholds when grading
sawn timber to conform to manual grading for a North
African importer, and Lycken and Oja (2006) showed, using
re-substitution, a prediction accuracy of 80% and 85% when
grading planks to conform with manual grading of the stan-
dardised sorting grades Swedish Sawmill Managers Associ-
ation (1994). The present study implies that using the
current hardware a sawmill could grade sawn timber accord-
ing to a customer’s product quality with an accuracy similar to
that achieved when grading sawn timber according to pre-
defined sawn-timber-grades. This customer product adapted
grading was possible even when the customer processes
the wood material by both splitting it into three boards and
further refining each piece to a finished product. The
grading accuracies of the above presented multivariate
grading results can be compared to the 80-90% grading accu-
racy of Nordic RBAG systems (Lycken and Oja 2006).

The re-substitution model achieved a separation of grade
A and B planks to the extent shown in Figure 2, which is con-
ceptually very similar to the separation achieved by each of
the re-sampling models of the cross-validation. The result of
these separations are shown in Tables 4 and 5 for the cross-
validation and re-substitution at thresholds 0.55 and 0.56,
respectively. For both tests, the grading accuracy of grade B
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Re-sampling 2

planks was much lower than for grade A planks. This was
due to the large spread of predicted grades of grade B
planks, shown in Figure 2, with several observations with a
predicted response grade above 0.75. These grade B planks
were from a measurement standpoint very similar to distinct
grade A planks, which indicated that ambiguous, or possibly
even undetected defects caused the plank to receive grade
B at the planing mill. Today’s automatic sorting systems
have a feature detection hit rate of around 70-80% (Lycken
and Oja 2006) which could explain at least parts of this ambi-
guity problem. The higher grading accuracy of the re-substi-
tution is mostly due to the increased grading accuracy of
grade B planks. This could in part be due to the higher
number of grade B planks in the training set: 109 grade B
planks were in the training set for the re-substitution while
88 planks were in the training set in each of the models
used for the cross-validation, which is slightly below the
minimum recommended number of planks per grade
suggested by Lycken and Oja (2006). The lower grading accu-
racy of grade B planks could also imply that grade B planks
were less correctly graded in comparison to grade A planks
due to the data set consisting of only one-third grade B
planks. The low number of grade B planks was the primary
reason re-substitution was used as supplementary testing to
the cross-validation.

Figure 4 showed that the individual re-sampling models of
the cross-validation graded planks with an accuracy between
61 and 80% at thresholds between 0.49 and 0.60, and on
average 74% at the average class-separating threshold 0.55.
This accuracy range, and the way the measurement Tot-
correct for each re-sampling follow the average behaviour
in Figure 4 with little variation, except for re-sampling 3, indi-
cate that the data set used was large enough for reliable cross-
validation testing. The same figure also show the need for a
cross-validation, as a single randomised split of the data
set into one training and one test set could have shown
erratic results, e.g. re-sampling 3. The re-substitution test
follows much the same behaviour as the average results of
the cross-validation but with slightly higher grading accu-
racy, further supporting the grading accuracy of HSAG,
especially in terms of the amount of planks delivered from
the sawmill and the proportion of desirable planks received
by the planing mill, shown in Figure 5. Both testing methods

Re-sampling 3 —Re-sampling 4 —Re-sampling 5 ===Average
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Figure 4. The prediction measurement Tot-correct vs threshold value for re-samplings 1-5, including the average. The value of Tot-correct for the different re-samplings
at the pre-selected thresholds was in the range 61-80% at thresholds between 0.49 and 0.60, and on average Tot-correct was 74% at the average threshold 0.55.
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Figure 5. Prediction measurements (Table 3) Delivered and A-purity vs threshold of the average prediction results of the 5-fold cross-validation and for the re-sub-

stitution model.

indicate that PLS-based HSAG generate new predicted
grades for sawn timber pieces with reliable accuracy. Fur-
thermore, Figure 3 show that the prediction accuracy is
slowly changing for practically applicable thresholds, say
between 0.30-0.70, which in combination with Figure 5
suggests that the sawmill and customer can decide on a suit-
able and reliable threshold without great loss of prediction
accuracy.

The measurements Delivered and A-purity were considered
the general satisfaction of the grading outcome at the sawmill
and planing mill respectively, i.e. the proportion of scanned
planks graded and sold as grade A by the sawmill, and the pro-
portion of grade A planks received in a batch purchased by the
planing mill. The measurements Delivered and A-purity are
paramount in a sorting discussion between sawmill and custo-
mer which for the average cross-validation results and the re-
substitution results showed a very similar behaviour in Figure
5. Further simplifying the sorting discussion is the single
threshold variable controlled in a PLS-based HSAG system, in
contrast to RBAG systems which requires an objective descrip-
tion of a subjectively good quality sawn timber, using a large
set of uncoupled variables.

Future research should investigate the methodology on
larger data sets than in this study and preferably multiple
and separate data sets simultaneous to further validate the
robustness of the PLS-based HSAG methodology. A balance
between the number of observations in each class could
also be desired. A separate data set is especially needed
because of the heterogeneous nature of wood and the con-
tinuous flow of sawn timber through a sawmill, never
seeing the same piece twice. A large enough data set is
needed to enable sufficient information to be obtained on
all possible features of wood, as machine-learning techniques
like PLS require large training sets that include every possible
defect (categorically at least) to train models for future use.

The handling and processing of large sets of unsorted
planks by both sawmill and customer to train a grading
model can quickly become cumbersome, especially for the
customer who has to process not only good quality reference
planks but also obviously poor quality planks for the sake of
having a bad quality reference for training. Future work
should therefore investigate the possibility of using the

cameras used by the scanning system to show the sawn
timber and allow the customer to grade the images as
being desirable or not, which would circumvent both trans-
portation and processing of material for a training data set.
This could allow for customer adapted grading.

Conclusions

This study showed that it is possible to use a multivariate PLS-
regression-based HSAG to predict the product quality yield of
an industrial planing mill, with regards to the performance of
the methodology based on measurements made at a sawmill
dry sorting station. The trained HSAG model can predict the
final product grade at the planing mill based on measurement
from the sawmill’s scanner system, even though the scanned
sawn timber is split into three boards at the planing mill
before each board was further processed before final
grading. This final product grade was the only input required
from the customer, which was a simple holistic-subjective
grading of their own product; removing the difficulties
found in previous attempts to customise an RBAG system
according to the customer’s needs. The holistic-subjective
automatic grading methodology simplifies the customisation
process drastically for both sawmill and customer.
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Notes

1. PLS-DA is PLS regression implemented to distinguish between
classes and is mathematically equivalent to PLS regression.

2. An estimate can lie outside this range e.g. if the observation is
more extreme in X than any observation in the training set.
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ABSTRACT

Holistic-subjective automatic grading (HSAG) of sawn timber by an industrial customer’s product
outcome is possible through the use of multivariate partial least squares discriminant analysis (PLS-
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DA), shown by part one of this two-part study. This second part of the study aimed at testing the

robustness to disturbances of such an HSAG system when grading Scots Pine sawn timber partially
covered in dust. The set of 308 clean planks from part one of this study, and a set of 310 dusty
planks, that by being stored inside a sawmill accumulated a layer of dust, were used. Cameras

KEYWORDS

Sawn timber; visual grading;
customer adoption;
discriminant analysis

scanned each plank in a sawmill's automatic sorting system that detected selected feature
variables. The planks were then split and processed at a planing mill, and the product grade was
correlated to the measured feature variables by partial least squares regression. Prediction models
were tested using 5-fold cross-validation in four tests and compared to the reference result of part
one of this study. The tests showed that the product adapted HSAG could grade dusty planks with
similar or lower grading accuracy compared to grading clean planks. In tests grading dusty planks,
the disturbing effect of the dust was difficult to capture through training.

Introduction

Part one of this two-part study showed that it was possible to
predict a customer’s product grade outcome by holistically
and subjectively grade sawn timber using partial least
squares discriminant analysis. However, given a sawmill's
dusty environment, it is important to know how a visual
grading system is affected by disturbances. This second part
of the study aimed at testing if a holistic-subjective automatic
grading system is robust to disturbance in the form of a layer
of dusty on top of the scanned sawn timber.

Method development (part 1 summary)

Automatic dry sorting stations at sawmills in Scandinavia use
mainly objective rule-based automatic grading (RBAG) to sort
sawn timber into standardized visual quality grades, e.g.
(NTGR, 1994). RBAG is objective by nature, ie. it uses
different measurement rules (limits) to define grades. The
problem with using rules to separate grades that motivated
part one of this study (Olofsson et al., 2019), as well as pre-
vious work by Lycken and Oja (2006); Berglund et al. (2015),
and Olofsson et al. (2017), was that a large set of correlated
grading rules had to be manually created by some expert
for a coherent grading. Sawmill customers often have a holis-
tic-subjective view of sawn timber quality, meaning they
judge the whole piece at the same time and rules can be over-
ridden based on the overall appearance of the piece. The
large set of grading rules required, and the difficulty in

defining them to holistically describe a customer’s subjective
definition of desirable quality sawn timber means that
attempts to customize grading rules are seldom made. This
problem is prominent when a sawmill is trying to make custo-
mized quality grades for costumers whose needs are not at all
in line with the standardized grades, as this requires that big
changes to the standardized grading rules have to be made.
The collaborating industrial planing mill in this study is an
example of this. The problem with customizing an RBAG
system for a new holistic-subjective grade manifests itself pri-
marily in two ways defined by Lycken and Oja (2006) as: (1) it
is difficult for a customer to describe their subjective view of
the desired sawn timber quality in a way that can easily be
defined in objective grading rules, (2) the number of variables
that can be controlled to specify a grade is often large enough
to make customization complicated.

The problems with RBAG for a customer were addressed in
part one of this study by implementing a holistic-subjective
automatic grading (HSAG) method of Scots pine sawn
timber with a collaborating sawmill and planing mill. Using
the current sawmill hardware, an automatic scanning,
grading, and sorting system was used to show that it is poss-
ible to grade sawn timber with HSAG according to the planing
mills quality grade outcome. The grading method used was
multivariate partial least squares discriminant analysis (PLS-
DA), where prediction models were trained on aggregated
feature measurements of each plank and the manually deter-
mined quality grade yield. This was done even though the
planing mill split, planed, and milled the sawn timber.
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The tested grading models gave an overview of the
grading accuracy level, and sensitivity to the random selection
of test sets. The prediction models showed a stable behaviour,
indicating that the PLS-DA can be suitable for HSAG. The
HSAG was in part tested by 5-fold cross-validation to correctly
grade 74% of the planks, in a data set of 308 planks. This
grading accuracy can be compared to the 76-85% grading
accuracy achieved in re-substitution tests in previous work
by Berglund et al. (2015) and Lycken and Oja (2006) when
grading sawn timber according to visual standard grades
from NTGR (1994).

Grading results from a PLS-based prediction model are
highly dependent on how accurately the test set is rep-
resented by the training set. Since the input to a sawmill is
naturally heterogeneous wood, it is highly probable that the
input material to the sorting station has never been experi-
enced by the currently active grading model. The problem
of having a training set that is representative of the test set
is especially important in the context of systematic differences,
due to e.g. difference in visual scanning conditions. This gave
rise to the question of how robust a PLS-based HSAG grading
method is to unforeseen disturbances (changes) of the input.
This was tested in part two of this study project.

Robustness to disturbances

Some automatic dry sorting stations in Scandinavian sawmills
grade sawn timber by visual appearance by objective rule-
based automatic grading (RBAG). This is done by cameras,
advanced feature detection algorithms, and a set of well-
defined grading rules. Such grading rules defines feature
limits, e.g. the maximum size of dead knots or maximum
number of sound knots, and are often created to follow stan-
dards like NTGR (1994). Lycken and Oja (2006) stated that the
hit-rate for defect classification in Nordic visual automatic
grading systems was around 70-80%, which resulted in
approximately 80-90% plank-grade hit-rate, depending on
grading rules and material. Part one of this study graded
sawn timber using the same hardware and feature detection
but with a different grading methodology. Instead of defining
a set of grading rules, partial least squares discriminant analy-
sis (PLS-DA) models were used to grade the sawn timber in a
holistic and subjective way, i.e. grading the entire piece at the
same time to match a subjective quality assessment. The sub-
jective quality assessment of the sawn timber was the product
quality yield of an industrial planing mill customer that manu-
ally graded the product outcome as desirable or undesirable.
The PLA-DA model graded the sawn timber with a grading
accuracy of 74%, based on 5-fold cross-validation. Because a
PLS-based holistic-subjective automatic grading (HSAG)
model has to be trained on a known data set before use,
called training set, it is important to know how the system
would grade sawn timber which is not systematically similar
to the training set. Lycken and Oja (2006) studied the
grading outcome of PLS grading models when grading
sawn timber to conform with manual grading with grading
models trained and tested on material of the same size,
either 50 by 200 mm or 50 by 150 mm in cross-section dimen-
sions. However, training a grading model on planks of

WOOD MATERIAL SCIENCE & ENGINEERING @ 421

dimensions 50 by 200 mm while using the model to grade
planks of dimensions 50 by 150 mm resulted in a grading
accuracy drop from 85% to 59%, and a drop from 80% to
70% in the reversed scenario. This change of plank dimen-
sions was a systematic difference that drastically lowered
the grading accuracy of the grading model. Systematic
changes in input can also be unforeseen disturbances, e.g.
sawdust on the camera lens. In the present study, a layer of
dust on the sawn timber was the unforeseen disturbance in
the grading process that was tested. The dust layer changed
the input to the HSAG system since the condition for the
feature detection was altered and the feature detection
error rate was assumed to increased, which in turn should
affect the grading outcome. Part two of this study aimed to
investigate the robustness of PLS-DA models to disturbances
in the detected features due to a layer of dusty on top of the
sawn timber. The effect of the dust on the grading outcome
was investigated to answer two questions.

(1) How a PLS model trained on clean planks react to the
changes in input when grading dusty planks. The dust layer
changed the visual conditions for the cameras which
affected how, or if, features were detected and classified. The
possibly misclassified features were in turn the altered input
to the PLS model. This can be expected to affect the grading
outcome based on how potential detection errors were inter-
preted by the PLS model. The first objective was tested by
training a PLS model on clean planks and grading dusty planks.

(2) How the prediction accuracy of a PLS model trained on
a data set including the dusty planks relates to the model
trained only on clean planks. Trying to account for unfore-
seen disturbances by training the prediction model on a
data set as diverse as possible could strengthen the ability
of the PLS model to grade any kind of planks but with a
potential consequence of losing grading accuracy when
grading the undisturbed clean planks. The second objective
was investigated by training PLS models on both clean
planks and dusty planks, and then testing the models by
grading test sets of mixed planks, clean planks, and dusty
planks, respectively.

Apart from grading accuracy, the selected thresholds were
compared to the respective optimal threshold values. Since
the threshold was chosen based on the training set, the
selected threshold might be far from its optimal value if the
training set does not represent the test set due to the disturb-
ance of the dust.

Materials and methods

The collection of scanner data from the sawmill, and customer
response from the planing mill; the construction of regression
components; the implementation of PLS prediction models;
and the testing methodology followed the same procedure
as in part one of this study (Olofsson et al, 2019). The
scanner, grader, and sorting system used was the same Board-
master by FinScan (Anon, 2018) at Kdge Sawmill. Dialogue
with FinScan ensured that the scanner data of the two
batches were comparable. Lundgren’s planing mill was
again the industrial customer with the same product and pro-
duction process as in part one of this study.



422 (&) L OLOFSSON ETAL.

Material

Two data sets were used: (1) the 308 planks used in part one
of this study, referred to as the clean data set; and (2) a new
set of 310 planks with the unforeseen dusty disturbance,
referred to as the dusty data set. Both sets of planks originated
from the same large sawing batch, so that there were no
differences in sawing or handling conditions, except for that
the second, dusty, data set had been stored uncovered
indoors at the sawmill for one year before being scanned.

The dusty data set consisted of 310 Scots pine (Pinus syl-
vestris L.) planks, sawn from top-logs from the sawmill's log
yard sorting station. Each log was cant sawn, and the
centre yield of two planks was used for the study. The
planks measured 50 by 150 mm in cross-section and varied
between 3.4 and 5.5 m in length. The planks were dried to
14% moisture content before being stored and eventually
scanned at the sawmill.

During storage, the planks were exposed to the dusty
environment which left dust stains especially on the ends of
the planks, and with visible marks from the spacers.
Example of planks from the two data sets are shown in
Figure 1. Almost every plank in the second data set had one
dusty side and one clean side, as the dust settled on top of
each plank, but some few planks were clean altogether or
dusty on both sides. The plank orientation was considered
random, i.e. the dust settled randomly on either plank face.
The Boardmaster was calibrated as in part one of the study
as if the dust was not present.

Data collection

The ID marked sawn timber was scanned by the Boardmaster
and feature variables regarding knots and bark were saved
before the timber was delivered to the planing mill. Other
feature variables detected by the Boardmaster, such as
wane or cracks, were ignored in this study as knots and
bark features are critical for the customer and suitable for hol-
istic-subjective grading. The ignored variables were ignored
by the planing mill as well. Each plank was split into three
boards which were each planed, milled, and manually
graded - each board given grade A for desirable or grade B
for undesirable for the planing mill. Each plank ID was associ-
ated with a digital label according to the majority of board
grades produced, to study borderline cases, i.e. planks were
labelled AAA, AA, BB, or BBB - omitting a B or A from the

mixed labels AAB and BBA to keep labelling clean. Each
plank was given a grade A or grade B based on the majority
of grade A or grade B boards produced, i.e. AAA and AA
was given the grade A for desirable, and BB and BBB planks
the grade B for undesirable.

The quality distributions of the two data sets are given in
Table 1, which showed that the two data sets had very
similar proportions of grade A planks, with a slightly larger
proportion labelled AAA in the dusty data set.

Applying PLS regression

Below is a brief overview of the implementation of PLS
described, for a more thorough explanation, see Olofsson
et al. (2019) - especially Table 1 and Figure 1.

Using the knot and bark measurements from the Board-
master, which provides size, position, and defect type, a
detailed set of 3564 aggregated variables were created to
expand the ability of the HSAG system to capture, in objective
measurements, the subjective quality traits desired by the
customer. Each of the 22 created variables was measured
for 6 defect types, separately for each of the plank’s 3 faces
(edges together), and separately measured in 9 different sec-
tions of each plank which was divided into 1, 3, and 5 sections
in the lengthwise direction of the plank. In total,
22-6-3-9 = 3564 variables were created.

Using the aggregated feature variables from the Board-
master and the planing mill quality grade assessment, both
data sets could be used to create an explanatory matrix X
(up to 618 by 3564) and a response matrix Y (up to 618 by 1).
Using the SIMCA 14 software (Anon, 2019), these matrices
were used to train PLS regression models based on different
training sets, which were then used to predict the quality
outcome of a series of test sets.

Based on new measurements of a test plank, a PLS predic-
tion model predicts a value approximately between 0 and 1

Table 1. The number of clean and dusty planks in each data set, shown with
proportion of each label and plank grade.

Clean set Dusty set

Label Number Proportion Number Proportion
L)
S| « AAA 126 41% o 147 47% o
el AA 73w 0% 55 18% 0%
= BB 43 14% 39 13%
c|l oo 0
= BBB 66 n% % 69 0% 3%

Totals 308 100% 310 100%

Figure 1. Examples of three clean planks of data set 1 (top), and three dusty sides of planks in data set 2 (bottom). The bottom planks show clear dust shades
between the clear marks caused by the spacers. The number written on each plank is the unique ID-number of each data set and the numbers 8 and 9 repeats

by chance.



which can be thought of as a probability of that plank being of
grade A. A threshold value decides what the prediction model
classifies as of grade A or not. The class-separating threshold
of each prediction model is determined by choosing a
threshold that optimally separates the classes A and B in
the training set of that prediction model.

Testing specifications

From part one of this study, the average grading results of the
5-fold cross-validation of the clean data set served as the
reference case. The grading accuracy of the PLS-based
HSAG method was tested according to four user-case scen-
arios, and compared to the reference case (test 0), detailed
in Table 2.

Six new PLS prediction models are created in part two of
this study. One model was trained on the complete clean
data set, and based on the training set the threshold 0.56
was selected. This model was used in test (1) to test the discri-
minant model’s robustness to unforeseen disturbances
(research question (1) presented in the introduction). Five
more prediction models were created for 5-fold cross-vali-
dation of both the clean and the dusty data sets together.
The benefit of cross-validation over a single training and
test set is that the average behaviour is less test set sensitive,
which is necessary due to the high variability and complexity
of the data sets used in this study. Each of the five models was
tested on a unique fifth of the combined data set, and trained
on the rest. The test sets were proportionally randomly
selected from both the clean and dusty data sets, as well as
proportionally selected from each label class. For each
model a threshold was determined from the training set,
which on average was 0.56' and the average prediction
result was calculated. The same average prediction results
of the 5-fold cross-validation was used in tests (2-4), where
tests (3-4) are a split of test sets from test (2). Tests (2-4)
share the same prediction results and the same 5 prediction
models for the cross-validation, the results of test (2) are sep-
arated into tests (3) and (4) to show differences in grading

Table 2. Test setups and objectives.

# Training set  Testing set Test objective
0 Clean Clean The reference use-case where the sawmill
graded clean planks by a prediction model
trained on clean planks.
1 Clean Dusty To test the effect of the dust by grading dusty
plank with a prediction model trained on
clean planks.
2 (Clean and Clean and  To test the behaviour of a prediction model
dusty dusty that was trained to take unforeseen
disturbances into account by training the
prediction model on both clean and dusty
planks, here grading a set of mixed clean and
dusty planks.
3 (lean and Clean To test the behaviour of a prediction model
dusty that was trained unnecessarily to take
unforeseen disturbances into account when
grading only clean planks.
4 Clean and Dusty To show the difference in grading outcome

dusty compared to test (1) when grading dusty
planks when the prediction models were
trained on a training set including dusty

planks.
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outcome between the different test sets. These tests were per-
formed to test the average grading accuracy of the discrimi-
nant models when taking the dust into account by training
the prediction models on a mixed set of planks (research
question (2) in the introduction).

The robustness of a grading model to unforeseen disturb-
ances was, apart from grading accuracy, also investigated by
studying the used threshold compared to the optimal
threshold value for the different tests. Selecting a threshold
based on a training set that is not is not representative of
the intended test set could result in a lowered grading accu-
racy and was therefore also investigated. The maximum
grading accuracy of e.g. test (1) could be the same as for
the reference model (test 0) but at a different threshold
than for the reference case. In part one of this study, the
average grading accuracy of the 5-fold cross-validation was
74% at the average class-separating threshold 0.55, compared
to the average peak grading accuracy of 76% at the optimal
threshold 0.52. Compared to the optimal, this is a loss of 2 per-
centage points of grading accuracy and a 0.03 points miss of
the optimal threshold value. Similar comparisons will be made
for each test in part two of this study. This loss of grading
accuracy and miss of optimal threshold is due to the fact
that the tested model was not optimized for the current
test set. Furthermore, the dust layer was expected to lower
the grading accuracy, especially in test (1).

Results

To evaluate the effects of unforeseen disturbances on the
accuracy of PLS-based HSAG, the results of several prediction
models were tested in tests 1-4. Prediction results were com-
pared with the reference 5-fold cross-validation analysis from
part one of this study, presented as test (0) in Table 3 for easy
reference. The test specifications are detailed in Table 2 and
the results of each test are presented in Table 3 using the cor-
responding selected threshold.

In test (1), a single prediction model was trained on the
entire clean data set from part one of this study and was
tested by grading the entire dusty data set from part 2 of
this study. The prediction results are visualized in Figure 2
where the prediction results are shown for the selected
class-separating threshold 0.56, and as test (1) in Table 3. In
test (1), 73% of the dusty planks were correctly graded in com-
parison to the 74% correctly graded planks according to the
reference case.

Figure 3 shows the grading accuracy for the four tests at
thresholds between 0 and 1. The reference results from part
one are shown as well. For test 1 the grading accuracy
curve was close to constant (approximately 71%) for a wide
range of thresholds (approximately 0.3-0.8) before dropping
off, while the other tests all showed similar behaviour as the
reference test for all thresholds.

Optimal grading accuracy and threshold

The optimal grading accuracy of a prediction model could
in hindsight be found at some optimal class-separating
threshold for each test. A small loss of grading accuracy
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Table 3. Misclassification table (confusion matrix) of the reference prediction
results (test 0, (Olofsson et al., 2019)), and for all the tests performed (tests 1-
4), showing the grading outcome of each respective test for each plank-label
class, using the selected thresholds. Test (0) used the average class-separating
threshold 0.55, test (1) used the class-separating threshold 0.56, and tests 2-4
used the average class-separating threshold 0.56. Predicted plank grades
were determined at the sawmill, and the observed grades were the grade
outcome of each plank at the planing mill. Tests 0, 2, 3, and 4 are based on
5-fold cross-validation and shows the average values. Predicted numner of
planks are rounded to whole number of planks.

_Predicted Grading
Label Number A B accuracy
hel
-3 AAA 24 21 3 87% )
%5 AA 14 1 30 7em 0%
=28 BB 8 5 3 40%
o 0,
. BBB 13 4 9 71% 59%
Totals 59 41 18 74%
e
-3 AAA 147 137 10 93% )
g5~ AA 55 31 a sew 8%
=3 BB 39 21 18 46%
o 0,
@ BBB 69 29 40 58% 54%
Totals 310 218 92 73%
el
~B AAA 53 46 7 86% .
g5~ AA 25 17 8 e  o%
=2 BB 16 9 7 45%
o 0
- BBB 2 g 18 7% 1%
Totals 120 79 a1 74%
o
~g AAA 24 22 2 91% ,
55~ AA 14 10 PR R
=28 BB 8 4 4 48%
o 0,
. BBB 13 3 10 74% 64%
Totals 59 40 41 77%
e
] AAA 29 24 5 82% )
% &< AA " 7 4 ew T
-2 BB 8 5 3 43%
o 0,
@ BBB 13 4 9 6%
Totals 61 40 by) 70%
1 O O
g
5
3
©o
-0.5 -0.25 0

0.25 0.5
Predicted

compared to the optimal was expected as the threshold
selection was not optimized for the test sets. The grading
accuracy of the reference test (0) is shown in Table 4 to
miss out on 2 percentage points of grading accuracy by
using a threshold 0.03 points away from the optimal
class-separating threshold. The grading accuracy of the
prediction model(s) of each test, and their respective
(average) thresholds, are compared to the optimal setting
in Table 4.

Discussion

The present study showed that the HSAG system used was
robust to, but not unaffected by, unforeseen disturbances in
the form of a dust layer on the sawn timber. As in part one
of this study, it was evident that when the sawmill and custo-
mer discuss which threshold to use to reach satisfactory
grading outcome, they need to take grading accuracy as
well as grading outcome into account. For example, the
grading and sorting outcome from the sawmill using a very
high class-separating threshold, say 0.8, would be a very
small batch of almost entirely grade A planks with almost
no incorrectly graded B-grade planks in the delivered batch
to the planing mill, but at a great cost for the customer due
to the low volume (see Figure 5 in part one of this study).
For this reason, a threshold close to 0.5 is preferable for a
balance of sawmill and customer satisfaction, as well as
being close to the optimal grading accuracy. The prediction
results of all prediction models are conceptually visualized
by Figure 2.

0.75 1 1.25

Figure 2. Observed vs predicted plot for test (1), where the dusty planks were predicted by the prediction model trained on the clean data set. The observed axis
shows the plank grade from the planing mill while the predicted axis shows the predicted plank grade value from the prediction model used at the sawmill. Grade A
planks are represented by 1 and grade B planks by 0. The grade separating threshold 0.56 is shown as a vertical line which defines planks with a predicted value
above the threshold as of grade A, otherwise B. These prediction results are conceptually similar for all models used.

80%

70%

60%

50%

40%

30%

0.0 0.1 0.2 0.3 0.4

—Test0 —Test1l —Test2

0.5 0.6

Test3 —Test4

0.7 0.8 0.9 1.0

Figure 3. The grading accuracy as a function of threshold for the prediction models in tests; (0): trained on clean data and predicting clean data, from part one of this
study; (1): trained on the entire clean data set and grading the entire dusty data set; (2): trained both data sets and predicting both data sets; (3): trained on both data
sets and grading the clean data set; and (4): trained on both data sets and grading the dusty data set.
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Table 4. Comparison of the used threshold and optimal threshold and the corresponding grading accuracy of each test, also showing the loss of grading accuracy
and difference of threshold compared to the optimal setting. Tests 0, 2, 3, and 4 are based on 5-fold cross-validation and shows the average values.

Test Accuracy Optimal Accuracy Used threshold Optimal threshold Accuracy loss (points) Threshold difference
1] 74% 76% 0.55 0.52 —2% 0.03
1 73% 73% 0.56 0.56 0% 0
2 74% 75% 0.56 0.50 -1% 0.06
3 77% 78% 0.56 0.54 —1% 0.02
4 70% 74% 0.56 0.50 —4% 0.06

In tests 1-4 (Table 3), the grading accuracy was similar to
that of the reference-case test (0), but there was a tendency
for the dust layer to affect the PLS-based HSAG results nega-
tively. As in part one of this study, the label classes with
higher number of planks in the data sets, shown in Table 1,
were overall graded with a higher grading accuracy, which
can be seen by comparing the number of planks in each
label class with the corresponding grading accuracy in Table
3. Grade B planks were graded with the lowest grading accu-
racy, which could be attributed to the disproportionate
number of grade B planks in the data sets. Table 1 show that
35% (approximately 110 pieces in each data set) of the
planks are of grade B. A data set with a proportional number
of planks per label-class might be desired, unless an increased
grading accuracy of grade B planks comes with an undesirable
trade-off of reduced grading accuracy of grade A planks. The
lower grade B grading accuracy could also be a consequence
of using a data set with few grade B planks, as Lycken and
Oja (2006) estimated that a minimum of 100 planks per
plank grade are required for PLS-based grading of sawn
timber by visual grades, indicating that more grade B planks
might be required for PLS-based product adapted grading.

In test (1), the prediction model had been trained only on
clean planks, and the model graded dusty planks with similar
accuracy to grading clean planks. The grading accuracy
dropped 1% point from 74% to 73% at the selected
thresholds 0.55 and 0.56, respectively (Table 3). This test simu-
lated a real world scenario where, based on the clean data
from part one of this study, a prediction model was created
and used at the sawmill. The model was used to grade
dusty plank and the PLS-based HSAG system would have
functioned as expected but with a 1% point lower grading
accuracy than the reference test (0). Due to the fact that the
prediction model was used to grade planks with unforeseen
disturbances, which it had not been trained for, this test
was assumed prior to testing to show the worst grading per-
formance, which was not the case. Test (1) showed the lowest
grading accuracy for thresholds close to 0.5 but showed much
higher grading accuracy than in the other tests for thresholds
above 0.7. This could be because this is the only test that com-
pletely separates the two data sets for training and testing,
making the separation of the classes more overlapping than
in the reference test (0) (see Figure 2 in Olofsson et al.
(2019)). The grading accuracy of test (1) means that the
sawmill and customer could have decided on a very high
threshold, up to say 0.8, without great loss of grading accuracy
as in the other tests, however this test did not represent a
common use-case.

In test (2), the prediction model was trained on a mixed set
of both clean and dusty planks and graded a mixed data set
by 5-fold cross-validation. The grading scenario in test (2)

was close to the reference case, where the prediction model
was trained and tested on similar data, i.e. clean, and mixed
planks respectively. The grading accuracy curve for test (2)
shown in Figure 3 was very similar to the curve for the refer-
ence test (0). This indicated that the sawmill should train the
prediction model on data that is as representative of the
intended grading batch as possible, dusty or not, as a
mixed-trained model retained the grading accuracy com-
pared to the reference test (0) when dusty planks are part
of the test set. At the selected threshold 0.56, the grading
accuracy increased from 73% to 74% compared to the refer-
ence, and since the prediction results are based on cross-vali-
dation on both the clean and the dusty planks, it was
expected to see similar behaviour as the reference cross-vali-
dation of the clean data set.

In tests (3) and (4) the same grading models as in test (2)
graded clean planks and dusty planks separately. Table 3
and Figure 3 showed that the grading accuracy was higher
when grading clean planks than dusty planks. At the threshold
0.56, the mixed-trained model graded 77% of clean planks cor-
rectly, compared to 70% when grading dusty planks, com-
pared to the 74% of correctly graded clean planks of the
reference test (0). As expected, the model graded clean
planks better than dusty planks. In Figure 3, the grading accu-
racy curves of test (3) and (4) behaved very much like
expected, as they are the separation of test (2) into clean
and dusty test sets separately; test (3) showed a higher
grading accuracy than test (2) for almost all thresholds, while
the opposite is true for test (4). Comparing tests (0) and (3)
indicated that the mixed-trained model can be expected to
perform equally or slightly better when grading clean planks
than a model trained only on clean planks, and the mixed-
trained model managed the highest prediction accuracy of
all tests in test (3) (Table 4). One argument for the higher
grading accuracy of the mixed-trained model when grading
clean planks was the benefit of the larger training set,
despite half of the training set being the dusty data set.
However, as the dusty data set was not completely covered
in dust, as almost all planks were only exposed to the settling
dust on the top-face, there was a net positive effect of training
on the dusty data set as well when grading clean planks. Com-
paring tests (1) and (4) indicated that the use of a mixed-
trained model performed slightly worse when predicting the
dusty planks, i.e. it was not possible in these tests to train a pre-
diction model to take the dust into account for a higher
grading accuracy of dusty planks. Comparing tests (0) and
(3) showed that it was possible to train a prediction model
on a larger data set and achieve higher grading accuracy
when grading clean planks.

The grading accuracies were slightly higher for the models
grading clean planks (tests 0 and 3) than for the models
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grading dusty planks (tests 1 and 4). Furthermore, prediction
model trained on the combined data sets (test 2) did not
grade planks more accurately than the reference model.
This indicates that regardless of what data set(s) the predic-
tion model is trained on, the dust on the planks introduces
some difficulties. This was expected as the Boardmaster was
calibrated for clean planks, and the layer of dust was bound
to affect the feature detection in some way. For the sawmill,
these tests indicated that the prediction model used should
be trained on a data set that is as large as possible and as
representative of the intended grading batch as possible.
This is especially true when grading batches of sawn timber
that is not expected to be dusty.

According to Table 4 the threshold for test (1) was by
chance selected optimally, which can be explained by the
flat grading accuracy curve in Figure 3 for thresholds
between 0.4-0.6. In Figure 3 the maximum difference of the
grading accuracy between test (0) and (1) was 4% points at
the threshold 0.51, indicating that the loss of prediction accu-
racy due to the dusty could have been larger than the
measured 1% point.

The robustness of PLS-based HSAG was, apart from the
grading accuracy, investigated by measuring the optimal
threshold stability, seen in Table 4. The threshold 0.56 was
in both test (1) and tests (2-4) purposely chosen to imitate
the use of a PLS-based HSAG system at the sawmill, with
the goal of maximizing grading accuracy. However, as the pre-
diction models tested were not optimized for the tests set
there is an optimal threshold that can only be determined
with known grade outcome at the planing mill. If the training
data is representative of the test set, the threshold selected
based on the training data should be close to the optimal
threshold value. Any large changes in grading accuracy or
large miss of optimal threshold might indicate that the predic-
tion model is not well trained for the current test set, i.e. the
training data is not fully representing the test data. Table 4
shows that in the reference case (test 0) the average threshold
value of the 5-fold cross-validation is 0.03 points away from
the optimal threshold, which resulted in a 2% points loss of
grading accuracy. Given the size of the clean data set and
complexity of the data used, this kind of variation was
expected and is the reference case for optimal threshold stab-
ility. In test (1) the clean training data was not expected to be
completely representative of the dusty testing data, but the
threshold selected based purely on the clean training data
was (surprisingly) the optimal threshold (Table 4), which can
be explained by the approximately flat grading accuracy
curve in Figure 3 for thresholds between 0.3 and 0.8. Anecdo-
tally, in Figure 3 the maximum difference of the grading accu-
racy between test (0) and (1) was 4% points at the threshold
0.51, indicating that the loss of prediction accuracy due to the
dusty could have been larger than the measured 1% point
with a slightly different test set.

The threshold value difference between the used and
optimal value for tests with dusty planks in the test set (tests
1, 2, and 4) showed higher differences (0.06 points), or the
above mentioned optimal threshold ambiguity in test (1), com-
pared to the tests with only clean plank in the test set. The larger
threshold difference indicated that when predicting dusty

planks the training data was not fully representative of the
test set, no matter the training set. In tests (0) and (3) the
threshold value difference was lower, at 0.03 and 0.02 points,
which indicated that when grading clean planks the training
sets were more representative of the test sets, no matter the
training set. For a user of a PLS prediction model, it is very impor-
tant that the training data is representative of the test data,
otherwise grading outcome estimated from the training data
might not transfer well to the actual grading outcome of a
test or when grading for a customer. The optimal threshold stab-
ility measurements showed that when grading dusty planks,
slight changes in grading outcome might occur unexpectedly.

Conclusions

The PLS-based HSAG of Scots Pine sawn timber investigated
in this study was robust to unforeseen disturbances in the
form of a layer of dusty on top of the sawn timber when
grading planks for an industrial customer. Prediction models
trained and tested on clean planks served as reference and
predicted on average the plank grade of new clean planks
correctly 74% of the time. The prediction accuracy dropped
1% point to 73% when a similar model was used to grade
dusty planks, which indicated that PLS-based product
adapted HSAG was robust to the disturbances of the dust.
However, the class-separating threshold used (0.56) was see-
mingly selected optimally by chance for this test, and the loss
of prediction accuracy could have been up to 4% points for a
different threshold in the range 0.4-0.6.

Prediction models trained on both clean and dusty planks
performed on average as good or better than the reference
models when grading only clean planks, with on average
77% correctly graded clean planks. This indicated that the pre-
diction model should be trained on a data set as large as poss-
ible consisting of planks as representative of the planks to be
graded as possible, even if they are dusty on one side. It was,
however, not possible in this study to improve the grading
accuracy of dusty planks by training the prediction model
on dusty planks as well as clean planks. Further research
should investigate if separate grading methods can detect
disturbances of the sawn timber measurements and handle
the identified pieces accordingly.

The class-separating thresholds used in the study were
selected based on the assumption that the training data was
representative of the test data of each test. When the dusty
planks were graded in any of the tests, the estimated
grading outcome determined by the training data did not com-
pletely translate to the grading outcome of the tests, which
indicated that the dust introduced some difficulty when select-
ing a class-separating threshold, as well as lowering the overall
grading accuracy. Further research is required to fully under-
stand how, and if, unexpected input to the PLS-based HSAG
system should be handled. A larger data set with more
extreme disturbances would be preferred for such a study.

Note

1. The threshold 0.56 is the same for test (1) and tests (2-4) by
chance.
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Abstract

Industrial high-resolution X-ray computed tomography (CT) scanners have recently been installed at
several sawmills worldwide for the description of roundwood interior features and external log shape.
These CT scanners represent a technological advancement for sawmill businesses that open a way to
higher volume and value yields and new production planning strategies. This paper will present an
indicative study of innovative use of non-destructive CT log data in a Swedish softwood sawmill, linking
high-quality information of the wood material along the wood-value chain. Sawn timber was observed
throughout the sawmill process line, i.e. from the log yard through the sawmill process until grading after
the timber was dried. Before sawing, the CT scanner scanned the logs and calculated knot measurements
from the 3D CT log data of simulated value-optimized center yield. A corresponding set of knot
measurements were later calculated from the camera-based grading of the dried timber. Only considering
knots from the two sets of measurements, the sawn timber was automatically given a quality assessment
based on CT data, by camera-based scanning data, and by manual visual grading for reference. Partial
least squares regression was used to create prediction models by correlating the two sets of knot
measurements with the automatically determined grade from the dry-sorting. The prediction models
tested increased the grading consistency between the grading based on CT data of virtual planks and
based on camera data of the same planks. Furthermore, a traceability algorithm was tested as a tool to
generate large data sets for future studies.

Keywords: sawn timber grading, computed tomography, partial least squares



Introduction

Sawmills perform several quality assessments and product classifications along the entire sawline
process—e.g. classifying the incoming logs (roundwood) by size, and the outgoing sawn timber by visual
appearance or strength. A recent high-technological quality-assessment tool added to the sawline at S&var
Sawmill in northern Sweden is a high-resolution X-ray computed tomography (CT) scanner from
Microtec (CT Log), which is used to create 3D CT images of the incoming logs. Giudiceandrea et al.
(2011), and Longuetauda et al. (2012) presented both an overview and an insight in the difficulties and
requirements of implementing an industrial CT-scanner in sawmills, capable of continuous high-speed
operation, but also the potential benefits of increased value and volume yields. Fredriksson et al. (2017)
presented a state of the art of the CT-scanning technology in the wood value chain, showing additional
possibilities of using CT-scanner technology in modern sawmills apart from increased value and volume
yields. Fredriksson (2014) calculated that fully utilizing CT-data of logs to determine optimal sawing
parameters increased the value yield on average by 13% compared to sawing positioning based on outer
shape only, and by 21% compared to the horns-down sawing position, based on 269 logs.

Once incoming logs to the sawmill have been CT-scanned, some algorithm is used to determine
how the log should be sawn. In the case of Savar sawmill, detected features, especially knot features, in
the 3D CT-image of each log is used to determine optimal sawing conditions, i.e. a sawing pattern and
positioning parameters. The detected features are projected onto sawn planks in the virtual 3D CT-image
and are used to determine the grade and value of each plank. The grade and value are determined by rule-
based automatic grading (RBAG), following the grading standard Nordic Timber Grading Rules (NTGR)
(Swedish Sawmill Managers Association 1994) used at Savar sawmill. By testing a large number of
possible sawing patterns and positioning parameters the intended optimal sawing conditions can be found.
The sawing pattern and positioning parameters are then sent to the sawing system that cuts the logs as
decided by the CT Log.

After sawing and drying, the sawn timber is sorted at the sawmill’s dry-sorting station where the
final grade of the sawn timber is determined. In the case of S&var sawmill, this is done using a camera-
based automatic scanning and grading system called Boardmaster from Finscan. The Boardmaster uses
cameras to detect features, e.g. knot features, cracks, wane, and so on, to determine the visual grade of
each plank by RBAG in accordance with NTGR. The NTGR governs all possible wood features, but only
knot features will be considered in this study, due to their importance to the final appearance grade and
the difficulty of detecting and describing knot features in a concise way.

The functionality of the CT Log when grading a virtual plank inside a scanned log is by design
very similar to the visual grading of the same plank performed by the Boardmaster at the dry sorting
station, i.e. the two systems use the same grading rules in their respective grading operations. The
difference is that the CT Log compares a lot of different grading outcomes to find the best sawing
conditions while the Boardmaster assigns the final grade. In theory, given identical input parameters from
a single plank, the two systems should give the plank the same grade. However, in practice, the CT Log
and the Boardmaster will never see the same identical plank as the virtual plank selected by the CT Log to
be sawn is separated from the actual plank, as seen by the Boardmaster’s cameras, by the sawing process.
The sawing process can introduce errors such as rotation or positioning errors during sawing, which
becomes more difficult as the speed of the sawing increases. The separation between the virtual plank and
the actual plank is made worse by possible detection errors. Longuetauda et al. (2012) presented an
algorithm to detect knots in CT-images, as well as an overview of previous work regarding automatic
knot detection using CT-imaging, showing an example of the difficulty of accurately describing knot
features in CT-images. Using cameras to accurately describe plank features is no effortless task either for
the Boardmaster. The differences between the virtual plank and the actual plank can result in a
disagreement between the intended plank grade given by the CT Log and the grade assigned by the
Boardmaster.



The goal of this study was to utilize the high-quality information extracted by the CT Log when
calculating the intended grade of a virtual plank in a 3D CT-image in a way that better agree with the
grade assigned by the Boardmaster, as to minimize the effect of detection errors and errors during sawing
on the final value yield. Furthermore, this study will investigate the use of a traceability algorithm of
individual planks between the CT Log and the Boardmaster as a means to create large data sets in the
future for similar studies where information from both the CT Log and Boardmaster is important.

This study suggests the use of multivariate partial least-squares regression (PLS) models (Geladi
and Kowalski 1986), similar to the ones used by Lycken and Oja (2006), Berglund et al. (2015), Olofsson
et al. (2017, 2019a, 2019b), and in related studies by Broman (2000) and Breinig et al. (2015). PLS
regression models have in previous studies been shown to be noise-resistant and capable of creating
prediction (grading) models base on a large number of highly colinear variables using a relatively small
number of observations.

Materials and methods
The material

A total of 238 pieces of Scots pine (Pinus sylvestris L.) sawn timber was studied at Savar sawmill in
northern Sweden. The planks originated from logs that had previously been scanned using X-ray computed
tomography by the CT Log, from Microtec (Anon 2019a), installed directly before the sawing system at
Sdvar sawmill. The CT Log fitted a sawing pattern with two 75x125 mm center-yield planks and calculated
value-optimized rotational and positioning parameters to be used during the following cant sawing process.
After drying the sawn timber to 18% moisture content, the material was scanned and graded at the dry-
sorting station by the camera-based and rule-based automatic grading (RBAG) system Boardmaster from
Finscan (Anon 2019b). Manual grading of the material was also performed and throughout this study, only
knot measurements were considered.

PLS modeling

The PLS modeling performed in this study, for both the CT Log and the Boardmaster, is very similar to
PLS modeling performed by Wendel (2019), who presents a similar study to this one but with a different
approach. Similar PLS modeling has been performed by the references at the end of the introduction,
most notably by Olofsson et al. (2019a), Berglund et al. (2015), and Lycken and Oja (2006), where
Olofsson et al. (2019a) includes a very detailed explanation of how this kind of PLS-based grading was
implemented for sawn timber grading by a Boardmaster at Kage sawmill (also a Boardmaster, using the
same grading rules). Conceptually, the same process is performed here for the sawn timber grading by
both the CT Log and Boardmaster and below follows a short description of the specifics about this
implementation. For a more detailed description of a similar implementation, as well as performance
evaluation by 5-fold cross-validation, see Olofsson et al. (2019a).

Knot variables

The aggregated knots variables used in this study, created by Wendel (2019), are 23 variables, detailed in
Table 1, calculated in each of the 9 zones shown in Figure 1, for each of the 4 plank faces, resulting in
23x4x9=828 variables. The 828 aggregated knot variables were calculated separately for both the CT Log
and the Boardmaster, based on measurements from each system.



Table 1—Description of the 23 aggregated knot-variables used in this study. Each X marks one variable with the
corresponding description and knot-type.
Variable description All knots  Sound knots  Dead knots

Total number of knots X X X
Number of knots per meter X X X
Maximum size in longitudinal direction (mm) X X X
Maximum size in axial direction (mm) X X X
Mean size in longitudinal direction (mm) X X X
Mean size in axial direction (mm) X X X
Covered area (%) X X X
The proportion of knots compared to all knots (%) X X
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Figure 1—Zone partitioning of each plank. Each variable in Table 1 is calculated in each of the 9 zones shown.
Grading

Knot measurement data from both the CT Log and the Boardmaster was stored for each of the 238 planks.
The grade of each virtual plank output by the CT Log—the intended sawing outcome grade—as well as the
grade assigned to each plank by the Boardmaster was also stored. Manual grading of each plank was
performed as a reference. Note that all grading was only based on knot features. Three different grades were
used by each system and during the manual grading, called A, B, and C (Tabel 4, NTGR), where grade A
represents a grade with few and small knots and high value and vice versa. Previous studies by Olofsson et
al. (2019a), and Lycken and Oja (2006) estimated that approximately 100 planks per grade could be
considered a minimum for training statistical grading models. To avoid underrepresenting the limiting
number of 65 grade A planks (by manual grading) in a three-class classification problem, only the grades
A and “other” were considered. In this study, the “other”-grade will be labeled grade B for a simple A vs
B discussion, even though B here includes grade C.

To associate the correct CT-grade and Boardmaster-grade given to each plank with the
corresponding ID number, a fingerprinting-traceability algorithm was used (Mdller 2019). The study by
Moller (2019) was performed in parallel to this study on 154 of the planks. The traceability algorithm used
in the study by Moller (2019), called CPF, projected all knots detected by the CT Log and by the
Boardmaster onto two one-dimensional binary vectors, creating a vector visually would look like a sparse
bar-code. This bar-code-vector was then used as a fingerprint to match 96% of the 154 planks between the
CT Log and the Boardmaster. This algorithm was used in this study to match 92% of the 238 planks to
indicate the possibilities of using such a traceability algorithm, but in practice, all matches were manually
checked to keep the CT Log-Boardmaster matching 100% for this study.

Both during the value-optimization process performed by the CT Log and during the final grading
by the Boardmaster a customer-adapted implementation of the visual-appearance-grading-standard Nordic
Timber Grading Rules (NTGR) (Swedish Sawmill Managers Association 1994) was used. This standard
defines rules (limits) as the maximum number and size of plank features allowed in different grades. The
standard defines rules for all types of wood features but this study will only use knot features, as knots are
the main deciding factor that determines the visual grade of sawn timber. Knots are also of particular interest
as a common belief in the sawmill industry is that customers tend to accept a few slightly larger than
specified defects (knots) if the rest of the plank is better than the average of a particular grade (Berglund et



al. 2015). The opposite is also true where customers might find a plank unsatisfactory if the overall
appearance is not representative of a given grade, even though all features are within the specified limits.

PLS model construction and testing procedure

Two PLS models were created, called the CT-PLS model and the BM-PLS model for the CT Log and the
Boardmaster, respectively. For each system, the corresponding set of aggregated knot variables were
correlated to the A/B-grade determined by the Boardmaster by multivariate PLS regression. For the CT-
PLS model, this means that the aggregated knot-variables from the CT Log was correlated to the A/B-grade
set by the Boardmaster by traditional RBAG. For the BM-PLS model, this means that the aggregated knot-
variables from the Boardmaster were correlated to the grade set by the Boardmaster by traditional RBAG.
Once the two PLS-models were trained on the known data, the PLS models could be used to predict the
grade of new planks with an unknown grade with some grading accuracy.

The performance of each PLS model was evaluated by 5-fold cross-validation, where the PLS
model was trained on four-fifths of the available data and tested on the remaining fifth, using the RBAG
grade from the Boardmaster. This is done to test the performance of the PLS model on data it has not been
trained on. This procedure is repeated five times and the cumulative prediction results on the entire data set
are presented as the PLS model’s performance on this, limited, dataset.

Results
RBAG agreement comparison

To establish a baseline for comparison, the RBAG performed by the CT Log and the Boardmaster are
compared to manual grading in Table 2, and to each other in Table 3.

Table 2—Misclassification table (confusion matrix) where the agreement of RBAG from both the Boardmaster
(BM-RBAG) and the CT Log (CT-RBAG) is compared to manual grading, where the systems agree to 81% and
79% with the manual grading. Do note the Discussion section, regarding the low grading accuracy of grade A
planks, and how these grading outcomes should not be interpreted as actual grading outcomes.

BM-RBAG CT-RBAG
Grade Members A B  Correct A B Correct
Té A 65 37 28 57% 24 41 37%
§ B 173 17 156 90% 10 163 94%
Total 238 54 184 81% 34 204 79%

Table 3—Misclassification table (confusion matrix) where the agreement of RBAG from the Boardmaster (BM-
RBAG) is compared to the RBAG from the CT Log (CT-RBAG), showing a 77% agreement. Do note the
Discussion section, regarding the low grading accuracy of grade A planks, and how these grading outcomes should
not be interpreted as actual grading outcomes.

CT-RBAG
¢ Grade Members A B Correct
é A 54 17 37 31%
2' B 184 17 163 91%
m Total 238 34 204 7%




PLS-based grading agreement comparison

The grading results of introducing PLS-based grading in the CT Log is shown in Table 4, where the grading
results are compared to the RBAG of the Boardmaster. Introducing PLS-based grading in both the CT Log
and the Boardmaster resulted in the grading agreement shown in Table 5, where the grading results of the
CT-PLS model is compared to the BM-PLS model, which is then compared to manual grading.

Table 4—Misclassification table (confusion matrix) where the agreement of RBAG from the Boardmaster (BM-
RBAG) is compared to PLS-based grading from the CT Log (CT-PLS), showing an 82% agreement. The prediction
results of the CT-PLS model is the cumulative prediction result of 5-fold cross-validation.

CT-PLS
(¢ Grade Members A B  Correct
é A 54 41 13 76%
< B 184 30 155  84%
o Total 238 71 168  82%

Table 5—Misclassification table (confusion matrix) where the agreement of PLS-based grading from the
Boardmaster (BM-PLS) is compared to the PLS-based grading from the CT Log (CT-PLS), and to manual grading,
showing an agreement of 83% and 82%, respectively. The prediction results of the PLS models are the cumulative
prediction result of 5-fold cross-validation.

BM-PLS BM-PLS
" Grade Members A B  Correct Grade Members A B  Correct
j A 70 54 16 7% g A 65 50 15 7%
5‘ B 168 25 143  85% g 8B 173 29 144  83%
Total 238 79 159 83% Total 238 79 159 82%
Discussion

This study has shown indicative results that the grading accuracy of the quality assessment systems CT Log
and Boardmaster are high at their respective quality assessment segments of the sawline at Savar sawmill,
with 79% and 81% (Table 2) agreement with manual grading, respectively. However, due to e.g. detection
errors and machining errors their grade assessment only agrees to 77% (Table 3), which can lead to
problems in a few ways: if the CT Log misclassifies the grade of virtual planks in 3D CT-images the
scanned log might not be sawn in an otherwise optimal way; if the Boardmaster misclassifies the sawn
timber at the dry sorting station there can either be a loss of value or an unsatisfied customer; if both the
CT Log and the Boardmaster classifies sawn timber correctly, a machining error in the sawing process
might still lead to a reduced grade; which in each case shows the desirability of higher agreement between
these two systems. By introducing PLS-based grading in the CT Log, the grading agreement with the
Boardmaster increased from 77% to 82% (Table 4), and by introducing PLS-based grading in the
Boardmaster as well, the agreements continue to increase to 83% (Table 5), while at the same time
increasing the grading agreement between the Boardmaster and manual grading from 81% (Table 2) to 82%
(Table 5). A high grading agreement between the two systems minimizes the effect of detection errors and
machining errors on the total value yield of the grading process.
The results of this study are indicative for a few reasons. The small amount of available data

limited the study to separate between two grades instead of three, and a combination of the two below
described difficulties lowered the expected agreement between both the CT Log and the Boardmaster



with the manual reference grade. Furthermore, the focus of this study was to maximize grading accuracy,
which affects grading outcome.

The limitation introduced in this study to use only knot features is outside normal operations for
the sawmill which affects the grading outcome. Furthermore, the sawn timber used in this study had to be
handled by trucks and conveyors more than usual due to repeated runs through the dry sorting station to
ensure intended functionality. The extra handing introduced more scuffs, dust, and oil-stains on the planks
than usual, which resulted in a lower agreement between the Boardmaster’s grading and the manual grade
reference than expected. Méller (2019)—who developed the traceability algorithm used in this study,
which involved partially the same material as in this study—showed in Figure 13 a set of planks that
could be considered the worst-case scenario.

During the CT-scanning and sawing process of this study, an error occurred with the positioning
mechanisms in the sawing system. This caused approximately 9% of the planks to be sawn with a
rotational error above 10°, which is much higher than during normal operation. This rotational error could
change on which face of the planks the knots inside the logs appear, which resulted in a lower agreement
between the CT Log’s grading and the manual grade reference than expected.

Conclusions

The indicative results of this study have shown that PLS-based grading increases the grading agreement
compared to RBAG between the two grading systems CT Log and Boardmaster. This was achieved by
introducing PLS-based grading in the CT Log, and by introducing PLS-based grading in the Boardmaster
as well, the grading agreement between the two systems and the agreement between the Boardmaster and
a manual reference grading either retained the same level of agreement or slightly increased it.

Each individual piece of sawn timber in this study required to be traced from the moment of the
CT-scanning by the CT Log, throughout the entire sawline process, including drying, until the dry-sorting
station where the Boardmaster scanned the same piece. This was done to 92% by a traceability algorithm
and the remaining 8% was traced manually—showing the potential of creating similar studies like this one
with the help of traceability algorithms.

Future studies should investigate the use of a traceability algorithm, like the one used in this study,
to recreate this study on a new, larger, data set to further validate the findings made here.
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ABSTRACT

Holistic-subjective automatic grading of sawn timber by a partial least squares (PLS) regression
model required training of the model. This study tests the sensitivity towards systematic changes of a
specialized PLS model, trained on a selected type of material suitable for a specific paneling product, when
used to grade sawn timber systematically different than the material it was trained on. A sawmills automatic
scanning system used cameras to measure knot and bark features on 900 planks. Each plank was split into
three boards, and each board was shaped into an indoor paneling product and manually graded as desirable
or undesirable at a planing mill. The plank grade was decided as the majority of the board-grade outcome.
The knot and bark measurements were used to create a large set of feature variables for each plank that was
correlated to the plank’s grade by PLS regression. Of the 900 available planks, 434 planks sawn from top
logs were used as a class-balanced specialized training set, with half of the planks resulting in a majority of
desirable boards. The regression model trained on the class-balanced specialized training set was used to
grade a test set of 282 planks, containing 64 planks that by manual classification of automatically captured
images were determined to be sawn from butt logs and were systematically different from the training
material. The PLS model’s grading accuracy of the planks sawn from top logs was 76%, compared to 70%
for the plank sawn from butt logs. The grading outcome resulted in a higher proportion of both delivered
planks from the sawmill and received desirable planks by the planing mill when grading planks from top
logs as compared to planks from butt logs. The results indicated that a specialized PLS model should not
be used for a generalized use-case.

Keywords: sawmilling, wood, automatic grading, PLS-regression

INTRODUCTION

Automatic grading is the most common way of grading sawn timber in today’s sawmills. For visual
appearance grading of sawn timber, rule-based automatic grading (RBAG) by a camera-based system is a
commonly used approach. This study is a continuation of the studies by Olofsson et al. [1, 2] and has the
same parties involved, with the same industrial planing mill representing the customer. The collaborating
sawmill uses visual RBAG to grade planks for delivery to the planing mill. For RBAG, a set of grading
rules has to be defined to govern the grading outcome. Such rules are well defined to follow grading
standards, such as the Nordic Timber Grading Rules [3], and controls e.g. the maximum allowed size and
number of a specific feature for a specific grade. Appearance grading standards mostly specify rules
regarding knots, as these are the main features affecting the general appearance of planks and will be the
focus of this study. RBAG of standardized sawn timber has been used to a great extent so that standardized
products are available at different sawmills. However, since not all customers are interested in the
standardized grades, customization is sometimes required. As discussed in [1, 2, 4-6], RBAG can be
intricate to customize due to mainly two difficulties, summarized by Olofsson et al. [1]:

(D) Itis sometimes difficult for customers to describe their subjective view of the desired plank quality
in a way that can easily be defined in objective grading rules.

(1) The number of feature variables that can be controlled to specify a grade is often more than enough
to make customization complicated.



These customization difficulties incentivized the studies [1, 2, 4-6] to grade sawn timber by a holistic-
subjective automatic grading (HSAG) method, i.e. a grading methodology that grades the entire piece
subjectively.

In the works [1, 2, 4-6] and in this study, multivariate partial least-squares (PLS) regression [7, 8]*
was used to implement HSAG of Scots pine sawn timber. The works [4-6] used PLS regression based
HSAG to grade sawn timber for the North-African market, while the studies [1] and [2] used the same
method to grade sawn timber for an industrial planing mill customer in Sweden. The main benefit of using
specifically PLS regression models for HSAG is its ease of use. The use of PLS-based HSAG also solves
the two difficulties with customizing RBAG for a specific customer [1, 2, 4-6], since [1]:

() The customer needs only to specify whether or not they want each piece of sawn timber—no rule-
based description is then necessary.

(1) The number of available parameters to be controlled is irrelevant as the HSAG uses multivariate
PLS regression.

One introduced difficulty with using PLS-based HSAG is the requirement to train the multivariate
regression model, and this requirement comes with some concerns regarding the material selection for
training. The PLS model needs to find a balance between being specialized and generalized, where
“specialized” meaning a PLS model trained on a specially selected type of material for a specific type of
grading, and “generalized” meaning a PLS model trained on a diverse material meant for more robust
general purpose grading. The problem with training a grading system to be either specialized or generalized
is the difficulty of selecting training material that is as representative as possible of the material that the
grading system is intended for. The planing mill customer that was the focus in [1] and [2], and will again
be the focus in this study, preferably wants to purchase sawn material with mostly sound knots for its
indented product. To provide suitable log material, the collaborating sawmill in the studies [1] and [2] pre-
sorted the logs before sawing and trained a specialized PLS model to grade sawn material from top logs. A
generalized alternative would have been to not pre-sort the logs and train a generalized PLS model on any
sawn material of suitable dimensions. Test number 1 by Olofsson et al. [2] was made to test how a PLS
model graded dusty plank when it was only trained on ordinary clean planks. Such a PLS model can be
thought of as specialized since it was trained specifically to grade “clean” newly sawn and dried timber to
a customer. The test exposed the specialized PLS model to a generalized grading test to grade dusty sawn
timber. The test was meant to show how the PLS model performed when grading sawn timber with a
disturbance, the dust, that the PLS model was not prepared for. The result was a slight reduction in grading
accuracy that slightly worsened the sorting outcome. Similarly, this study will test how a specialized PLS
model will grade sawn timber that it was not trained for by testing a PLS model on sawn timber
systematically different from the sawn timber it was trained on. The difference between the two tests is that
the test in this study is with regards to systematic differences while test number 1 by Olofsson et al. [2] was
with regards to disturbances.

As the planing mill customer requires sawn timber originating from top logs with mostly sound
knots for its intended product, sawn material from butt logs with mostly dead knots will be used as a
systematically different test material. The objective of this study was to test the sensitivity of PLS-based
HSAG towards systematic changes in the training and testing material, by training a PLS model on sawn
timber from top logs and testing it on sawn timber from butt logs.

MATERIALS AND METHODS

The data collection, variables construction, PLS-grading implementation, and testing methodology
in this study closely follows the procedures described in more detail by Olofsson et al. [1].

! See abstract of [7] for a quick overview of PLS regression and [1] for a more detailed and applied explanation.



The material

The material used in the study consisted of data from 900 Scots pine (Pinus sylvestris L.) planks.
Selected logs were cant sawn at Kége sawmill and resulted in a center yield of two planks of 50 by 150 mm
in cross-section and between 3.4 and 5.7 m in length. The sawn timber was dried to 14% moisture content
before being scanned at the sawmill’s dry-sorting station, using a FinScan Boardmaster [9]. The sawn
timber was delivered to Lundgren's planing mill where each plank was split into three boards and each
board was shaped to an indoor paneling product, and manually graded as of a desirable grade A or an
undesirable grade B. Each plank from the sawmill was given the average grade of its resulting boards after
splitting and shaping, e.g. a plank resulting in two boards of grade A was given the grade A. All plank
grades were stored in a response-grade vector y.

Data from the 900 planks was collected during three separate studies, 618 planks for the studies [1]
and [2] and 282 for this study, resulting in three combined data sets. The 618 planks from studies [1] and
[2] were sawn from pre-sorted top logs (with some error margin), based on 3D surface data and top
diameter. Specifically, the log sorting was performed to select logs containing sound knots, which for Scots
pine dominantly means top logs with some middle logs. For simplicity, these logs are generalized to all be
top logs. The planks added to the total data set in this study consisted of 282 planks, of which 69 (24%)
originated from butt logs. The data set collected for study [2] was the dusty data set mentioned in the
introduction. Olofsson et al. [2] concluded that the potential negative effects of training on the dusty data
set were outweighed by the benefits of training on a larger data set. Therefore, no further distinction will
be made for the dusty data set.

Data collection

The 900 planks in this study were all ID marked before being scanned by a FinScan Boardmaster
[9] at the dry-sorting station at Kége sawmill. The Boardmaster automatic scanning and grading system can
measure plank features such as knots, cracks, wane, bark inclusion, etc., and saves each feature’s size,
position, and classification. These measurements were the foundation of the HSAG and the feature variables
used were therefore carefully selected with regards to the planing mill customer. Since knot features were
important to the customer and especially difficult to describe subjectively by a set of grading rules, see
points I and Il in the introduction, features regarding knots were selected to be used for HSAG. As bark
pockets were also important for the planing mill, bark features were also selected. The selected knot and
bark features were stored and all other features were disregarded throughout the study—including during
manual grading of the finished product at the planing mill. Since feature size, position, and classification is
not sufficiently descriptive enough to describe the subjective quality outcome at the planing mill, the feature
measurements were used to create a large set (matrix) of feature variables X by an additional software tool.
Each row x represented a plank observation and each column represented a feature variable. The software
tool calculated 22 variables, for 6 different defect types, on 3 faces of each plank—edges together, and in
9 different zones, for a total of 22-6-3-9=3564 feature variables, see Table 1 and Figure 1 by Olofsson et
al. [1]. An example of such a feature variable could read “Sum of the defect area, of dead knots, on the
inner face, in zone 3”.

Butt log identification

Of the 900 planks available for this study, 618 planks were sawn from top logs and were available
for training of prediction models. Of the remaining 282 planks, 69 planks were manually classified as sawn
timber origination from butt logs. The butt-log origin of the sawn timber was determined by identifying
planks with characteristics of butt logs, using images automatically captured by the Boardmaster during the
data collection at the dry sorting station, see Figure 1. The images were created by an external software tool
that combined 3 camera images per plank face. One typical knot-characteristic of butt-log planks is a large
proportion of small dead knots. In this manual classification step, all available knowledge was used to
identify butt-log material as accurately as possible.



Figure 1. Example of faces of four ID-marked planks, where the two on the top were determined to be
sawn from butt logs and the two on the bottom were determined to be sawn from top logs. These images
were not used for feature detection by the Boardmaster and were stitched together from three camera images
per face after the data collection at the dry-sorting station using a Matlab script.

PLS implementation

Partial least-squares regression (PLS) was used to correlate the feature variables in X with the
response vector y by multivariate linear regression, using the SIMCA 14 software [10]. The
multidimensional regression line is then the prediction model trained on a sub-sample of X, containing 217
planks of grade A and 217 of grade B from the 618 planks sawn from top logs. The reason for the use of a
subsample of 434 planks during training is to avoid training a bias prediction model due to class imbalance
[11]. The data of the superfluous planks of grade A was discarded. Since the PLS model was trained on
sawn timber from top logs that are specifically suitable for the planing mill customer, the PLS model can
be considered specialized.

By representing the plank grade A as 1, and the plank grade B as 0, a new observation can have its
grade predicted by the regression line between 0 and 12. In this way, the predicted grade value can be
thought of as a probability that the plank’s grade is A, e.g. if a new plank is measured as a new row x, and
the regression line predicts the grade-value y as 0.68, the plank should probably be classified as of grade
A. However, a threshold has to be introduced somewhere between 0 and 1 (commonly 0.5) to decide the
grade, which introduces a simple control over the grading outcome. For example, the sawmill could decide
to use a threshold of 0.80 which would select planks for delivery to the customer that, by measurements
standpoint, are very similar to distinct grade A planks. Such a selective prediction model would deliver
grade A planks with very high grading accuracy, but to very low volumes, i.e a low yield of planks of grade
A (see Figure 5 by Olofsson et al. [1] for more detail).

The focus of this study was on optimizing grading accuracy, where previous studies by Olofsson et
al. [1, 2] have shown that an optimal threshold value is somewhere close to the range 0.50-0.60 for this
specific implementation.

RESULTS

To test the sensitivity of product-adapted PLS-based HSAG towards systematic changes in the
training and testing material, a PLS model was trained on the class-balanced set of 434 planks sawn from
top logs and tested on the 282 planks sawn from both top logs and butt logs. The SIMCA 14 software used
performed cross-validation to prevent overfitting and created two principal components for the prediction
model. Based on the predicted grade-value of the class-balanced set of 434 planks from self-prediction, the
optimal grade-separating threshold was estimated to be 0.488. This threshold was used to grade the set of
282 planks.

Table 1 shows the manual grading outcome at the planing mill, showing the disproportionate
number of grade A planks sawn from top logs vs butt logs, where 67% of the top logs resulted in grade A
planks compared to 36% of the butt logs.

2 The predicted grade can lie outside the range 0-1 e.g. if the new observation is more extreme in x than any
observation in the training set X.



Table 1 Manual grading outcome at the planing mill of the 282 planks sawn from both top logs and butt
logs, classified manually by staff at the planing mill.

Sawn timber from Number of planks Planks of grade A Planks of grade B
All logs 282 168 (60%) 114 (40%)
Top logs only 213 143 (67%) 70 (33%)
Butt logs only 69 25 (36%) 44 (67%)

The PLS model trained on the 434 planks sawn from top logs was used to grade the 282 planks
detailed in Table 1. The prediction outcome is shown in the confusion matrices in Table 2.

Table 2 Confusion matrices of the prediction results of the PLS model that was trained only on planks
sawn from top logs and used to predict a set of planks from both top logs and butt logs. The prediction
results are shown for all sawn material at the top and separately for the planks from top logs and butt logs
below. Sorting outcome is also shown. Delivered planks shows the proportion of the scanned planks
delivered from the sawmill, i.e. all planks graded as of grade A. Received A-planks shows the proportion
of received planks by the planing mill that were correctly graded as of grade A.

Predicted
f‘:’(‘)ﬁ 2y Result Number Grade A Grade B igﬁg;ggy

Grade A planks 168 135 33 80%
2 Grade B planks 114 40 74 65%
o
= Total 282 175 107 74%
< Delivered planks 175 (62%)

Received A-planks 135 (77%)

Grade A planks 143 117 26 82%
% Grade B planks 70 26 44 63%
= Total 213 143 70 76%
= Delivered planks 143 (67%)

Received A-planks 117 (82%)

Grade A planks 25 18 7 2%
% Grade B planks 44 14 30 68%
=] Total 69 32 37 70%
m

Delivered planks 32 (46%)
Received A-planks 18 (56%)




DISCUSSION

The results of this study show the possibilities of using automatically captured images to classify
sawn material since images were the foundation of creating the distinctly different separation of sawn
material from butt logs and top logs (Table 1).

The sawn timber from butt logs was systematically different and yielded much fewer planks of
quality A for the planing mill customer than the sawn timber from top logs (Figure 1, Table 1), clearly
showing why the planing mill purchases sawn timber from top logs. As the PLS model was trained
specifically on sawn timber from top logs, as this material is suitable for the planing mill customer, the
model was considered specialized. When the PLS model was used to grade sawn timber originating from
top logs, as it was intended for, the grading accuracy was 76%, and, out of the scanned planks, 143 (67%)
was delivered to the planing mill of which 117 (82%) yielded a majority of the desirable quality A boards
(Table 2). Using the specialized PLS model for its indented use-case graded the sawn timber with similar
grading accuracy as in the corresponding tests by Olofsson et al. [1, 2], showing that this implementation
of product adapted HSAG is consistent over the course of three studies.

Table 2 shows that the specialized PLS model did not grade the sawn material from butt logs with
the same level of grading accuracy as sawn material from top logs with 70% compared to 76% correctly
graded planks, respectively. The lower grading accuracy is due to the systematically different butt log
testing material. In test number 4 by Olofsson et al. [2], it was shown that the PLS model could not be
trained to take the effect of the dust into account, in an attempt to increase the grading accuracy when
grading dusty planks. This could be attributed to the random nature of the effect of the dust on the sawn
material, as the dust seemingly randomly obscured or distorted the plank features during feature detection
by the camera based Boardmaster. In this study, the systematically different material was sawn timber from
butt logs, with a measurable systematic difference (Figure 1). In theory, this means that the sawn material
from butt logs could be used for training to create a more generalized PLS model that could grade sawn
timber from butt logs with similar accuracy as sawn timber from top logs. However, in this study, no
generalized PLS model could be trained due to the lack of sawn material from butt logs. Lycken and Oja
[4] estimated that a minimum of 100 planks per grade is required for training, which is supported by
Olofsson et al. [1, 2]. This estimation of the required minimum number of planks could be extrapolated to
each systematically different set of training material, which in the case of class-balanced sawn material
from butt logs would require 100 planks of grade A and 100 planks of grade B, compared to the 25 and 44
planks available in this study. Future studies should investigate the possibilities of training PLS models on
systematically different material to test the grading accuracy of a generalized PLS model vs a specialized
PLS model in both a specialized and generalized use-case. This study can only conclude that a specialized
PLS model is not suitable for a generalized use-case, as the grading accuracy is significantly lower.

The lower grading accuracy of sawn material from butt logs indicates that both the sawmill and
planing mill will experience a poor sorting outcome (Table 2). Of the graded material from butt logs, the
sawmill only gets to deliver 46% of the scanned planks, and, out of the delivered planks, the planing mill
would only be able to use 56% of the planks to produce a majority of their desirable product of grade A.

CONCLUSIONS

The specialized multivariate PLS model, trained on sawn timber from top logs, graded the
systematically different sawn timber from butt logs worse than the material the model was trained on.
Theoretical arguments support the claim that sawn timber from butt logs could be included in the training
set to create a generalized PLS model that could be used to grade sawn timber from either top log or butt
logs without great loss of grading accuracy.

The result of this study is based on manual classification of sawn timber, as originating from top
logs or butt logs, using automatically captured images. The possibility to automatically capture and use
images of sawn timber opens up the opportunity of future work to train PLS models (or other machine
learning implementations) based on image classification.
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ABSTRACT

Using multivariate partial least squares regression (PLS) to perform visual quality grading of sawn timber
requires a training set with known quality grades for the training of a grading model. This study evaluated
the grading accuracy of an independent test set of sawn timber when changing the aspects of class-
balance and class-overlap of the training set consisting of 251 planks. The study also compared two
ways of expressing the reference-grade of the training set; by grading images picturing the planks,
and by grading the product produced from the planks. Two grading models were trained using each
reference-grade to establish a baseline for comparison. Both models achieved a 76% grading accuracy
of the test set, indicating that both reference-grades can be used to train comparable models. To
study the class-balance and class-overlap aspects of the training set, 25% of the training set was
removed in two training scenarios. The models trained on class-balanced data indicated that class-
imbalance of the training set was not a problem. The models trained on data with less class-overlap
using the product-grade reference suffered a 4%-points grading accuracy loss due to the smaller
training set, while the model trained using the image-grade reference retained its grading accuracy.
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1. Introduction

Automatic visual quality grading of kiln-dried Scots pine sawn
timber can be implemented using machine learning. This
paper uses multivariate partial-least squares regression (PLS
Geladi and Kowalski 1986, Wold et al. 2001), which can mimic
the holistic and subjective grading performed by manual
graders. Using multivariate grading for automatic sorting of
sawn timber for a specific product have been implemented
in the studies by Olofsson et al. (2019b, 2019¢), and for
similar visual classification purposes by Broman (2000),
Lycken and Oja (2006), Breinig et al. (2015), Berglund et al.
(2015), and Olofsson et al. (2017). These studies showed the
benefits of using multivariate PLS regression models in saw-
mills, but do not properly discuss the intricacies of selecting
training data for machine-learning. Lycken and Oja (2006)
tested how a PLS grading model trained on one dimension
of planks performed on a different dimension of planks. Olofs-
son et al. (2019a) showed how a model trained on sawn timber
from Scots pine top-logs performed when grading different
material sawn from butt-logs (much fewer knots, smaller, and
almost exclusively dead) - both providing some insight in
how different training material affect the grading outcome.

Using machine learning for automatic sorting of kiln-dried
sawn timber requires not only a data set with a large number
of observations to train an accurate grading model on but also
a high-quality dataset, i.e. a dataset with a high correlation
between the automatically measured variables of the sawn
timber and the assigned quality grade of every single piece
of sawn timber.

This study focuses on understanding how different aspects
of a training set affects the grading outcome of automatic
sorting of kiln-dried sawn timber using multivariate PLS
regression. More specifically, the aspects of class-imbalance
and class-overlap. In the context of sorting sawn timber
using machine-learning techniques, the aspect of class-imbal-
ance means to use a dataset with two or more classes of sawn
timber that are not equal in numbers. Uneven distribution of
classes is the typical case of most sawing batches due to the
way the grading standards used at the sawmill defines classes
(Swedish Sawmill Managers Association 1994). The aspect of
class-overlap means how closely related observations of
different classes are by a set of measurements. A high class-
overlap is the typical case of most sawing batches as the
grading standards used separates classes by limits, e.g.
‘maximum number of dead knots'. Using limits to separate
between classes means two observations of different classes
could possibly be distinguished only by a single knot, and
since a large number of features can be used to describe a
piece of sawn timber, the class-overlap is considerable. The
class-overlap and class-balance aspects of classification pro-
blems are well known in the machine learning literature
where Prati et al. (2004) explain these two aspects for syn-
thetic data sets, using a k-nearest-neighbours approach.

Prati et al. (2004) showed that the problems of class-imbal-
ance or class-overlap when training a machine-learning
model is not the only obstacle for applying machine-learning
algorithms to real-world problems, but rather the combi-
nation of the two. In the works by Olofsson et al. (2019b,
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2019c¢) the problems of class-imbalance and class-overlap was
implicitly shown but neither highlighted nor appropriately
discussed. The present study investigated how class-balance
and class-overlap affect the training of a PLS grading model
by testing different training scenarios. By using different train-
ing data with different properties, the performance of the PLS
grading model is expected to change. Therefore, the present
study compared different PLS models based on the same
data, but with a different number of class-members and
with different amount of class-overlap, and how this
changes the grading accuracy and grading outcome.

The investigation of class-balance and class-overlap was
performed with two different reference grades of the training
material. (1) Like in the earlier cited works, the sawn-timber
grade was assigned by a product manufacturer assessing
the split, milled, and planed finished wall panel product pro-
duced by each piece of sawn timber. (2) The same product
manufacturer graded images of each piece of sawn timber
to assess their suitability for the intended product. The
reasoning for investigating the second image-grade reference
is that such training data is much easier and cheaper to
acquire compared to having to process and grade large
batches of unsorted sawn timber by a customer. Testing the
effect of class-balance and class-overlap using these two
different grading references for training may show if the sub-
jective image-grade reference performs differently than the
more objective product-grade reference.

2. Material and method

The implementation of PLS Discriminant Analysis in the
present study followed the methodology applied by Olofsson
et al. (2019b), where an almost identical implementation was
presented in more detail. The study was executed in
cooperation with Kdge Sawmill (Norra Timber) and Lundg-
ren’s planing mill, both located in northern Sweden. Since
the available training data for this study was limited by the
number of images graded by the customer, the only way to
manipulate the different aspects of the training data was by
removing observations. Since it is always desirable of a
grading model to perform as accurately as possible, one
should carefully consider the effect of removing training
data before actual implementation. Furthermore, the
specific implementation of PLS regression in this study
makes the data unsuitable for re-sampling techniques, such
as the well-known and otherwise useful SMOTE algorithm
(Chawla et al. 2002). Other implementations of machine-learn-
ing techniques for automatic grading of sawn timber could
benefit from such techniques.

2.1. Reference grades of the material

Three data sets from earlier studies were used (Olofsson et al.
2019b, 2019¢, 2019a), consisting of nearly 300 Scots pine
(Pinus sylvestris L.) planks each, for a total of 846 planks. All
planks were cant-sawn from top logs or middle logs to the
dimensions 50 x 150 mm and the target moisture content
after drying was 14%. The planks had a length between 3.6
m and 54m at the dry-sorting station where cameras
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Table 1. Results of the product-grade reference and image-grade reference of
the baseline training data set consisting of 251 planks.

Grades
Grade reference A Not-clearly A Not-clearly B B Totals
Product 157 - - 94 251
Image 123 46 18 64 251

automatically scanned the planks. No distinction was made
between the data sets used in this paper. Sample images
can be seen in Figure 1 in Olofsson et al. (2019¢).

The quality grade of each plank was determined in two
ways. (1) The planks were delivered to Lundgren’s planing
mill where each plank was split into three boards
(15 x 150 mm); each milled, planed, and manually graded as
an accepted or rejected piece of wall panel. The resulting
grade of each plank was the majority of the produced three
pieces of boards, meaning a plank that produced two
accepted and one rejected board would be given the grade
A, meaning accepted, or vice versa the grade B, meaning
rejected. This A or B grade of each plank was called the
‘product-grade’. (2) Images of all plank faces of a sub-set of
251 planks, extracted from the automatic grading system at
the sawmill's dry-sorting station, were presented to the
quality expert at Lundgren’s planing mill. The quality expert
was instructed to only consider knot features when asked to
try and predict if each plank would produce a majority of A
quality boards, and in that case give that plank the grade A,
and vice versa for grade B. This A or B grade was called the
‘image-grade’. The quality expert graded the images of each
plank with grade A or grade B, and also labelled 64 planks
as ‘not-clearly’, meaning each plank was labelled with one
of four labels: A, not-clearly A, not-clearly B, or B.

The focus of this study was to study different aspects of the
training data when using a PLS regression model to grade
sawn timber automatically. To be as consistent as possible
when selecting training data for the comparison between
models trained using the product-grade reference and the
image-grade reference, the sub-set of 251 planks with both
a product-grade reference and an image-grade reference
was used as the so-called ‘baseline’ dataset for training. The
outcome of the two grading processes of the baseline training
set is presented in Table 1.

The remaining 595 planks, not part of the baseline training
set, with only a product-grade, were used as a large test set for
all tests. The grading accuracy of any model is how accurately
it grades the test set to match the product grade reference,
consisting of 386 planks of grade A and 209 planks of grade B.

2.2. PLS-DA implementation

Each plank was associated with a set of aggregated feature-
variables regarding knots and a binary quality grade. At the
sawmill's dry-sorting station, an automatic scanning and
grading system by FinScan, called Boardmaster (Anon 2018),
was used for detection of plank features (knots). The knots
were classified as, e.g. sound or dead, and their size and pos-
ition were determined. These measurements were used to
create a set of 3564 aggregated variables, described like
‘The total number of sounds knots on the inner face side of
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Figure 1. Flow-chart showing the different training scenarios and prediction
models. Solid boxes represent models trained on the product-grade (P) or the
image-grade (I), respectively. Dotted boxes show the different training scenarios
where the two models are compared with the baseline training scenario.

Class-balance

the plank’ (Olofsson et al. 2019b). These variables were
created for each plank and stored as an X-matrix.

The product-grade and image-grade data were stored as two
binary response y-vectors. Using the plank features stored in X,
and the plank grade in y (product grade and image grade sep-
arately), the SIMCA 14 software (Anon 2019) was used to corre-
late X and y of a training set, using multivariate Partial Least
Squares Discriminant Analysis (PLS-DA). Only one PLS-com-
ponent was used to separate between the two grades in all
tests as using two PLS-components showed signs of overfitting
the training data. The trained model was then used to predict
the grade of the test set.

2.3. Training and testing procedure

The baseline training set shown in Table 1 was used to train
two PLS models, one using the product-grade reference and
one using the image-grade reference (Figure 1). Once the
baseline grading outcome was established, planks were
removed from the baseline training dataset to change the
class-overlap and class-balance aspects of the training data.
For each of the new training scenarios, two new models
were created for a total of six models. All trained models
were used to predict the product-grade of the test set, i.e.
the models trained on the image-grade were also used to
predict the product-grade.

In order to be able to attribute the changes in the grading
outcome, or lack thereof, to the changes in the training set in
each training scenario, each model's class-separating
threshold was calibrated to achieve a specific grading
outcome (see Olofsson et al. 2019b for further details regard-
ing the class-separating threshold). The grading outcome was
controlled such that each grading model forcefully achieved
the proportions of grade A and grade B planks of the test
set; the test consisting of 595 planks had a ratio of grade A

_ Observed grade

S
=

02 0 02 04

and grade B planks of 2:1 and the class-separating threshold
was calibrated such that each model graded grade A and B
planks in a 2:1 ratio. Furthermore, any grading errors made
by the models will be evenly distributed between false-nega-
tives and false-positives for a simpler comparison.

2.3.1. Class-overlap

Since the class-overlap aspect of the training data is different
for the product-grade and image-grade references, the class-
overlap aspect was manipulated separately for each refer-
ence. (1) For the image-grade reference, the decision of
which planks to remove was made based on the image-
grading performed by the quality expert at Lundgren’s
planing mill. To reduce the class-overlap (make the classes
more distinct) of the training set, the 64 planks labelled
‘not-clearly’ in Table 1 were removed. (2) For the product-
grade reference, the product-grade trained model from the
baseline scenario was used to produce an observed-predicted
plot of the baseline training data (predicting the data it was
trained on), shown in Figure 2. The encircled observations in
Figure 2 had a low correlation between their variables in X
and product-grade in y since the model did not accurately
capture their grade. To reduce the class-overlap of the train-
ing data, 64 observations like the encircled ones were
removed in order of lowest correlation (left to right for
grade A planks, and right to left for grade B).

Once 64 planks were removed from each reference-grade
for the class-balance training scenario, two new models were
trained on the remaining 187 planks, using the product-
grade and the image-grade respectively. Note that different
planks were removed for the training of each of the two
models in this scenario, but the same number of planks
were removed each time such that differently sized training
sets do not influence the comparison of these two models,
but only the difference of the class-balance aspect. Out of
the removed 64 planks, 25 planks (36%) were removed from
both reference grades while 39 unique planks (64%) were
removed in each case.

2.3.2. Class-balance

For the training scenario where class-balance was investi-
gated, the number of planks in the training set of each refer-
ence-grade was reduced to the largest possible number of
observations that resulted in an equal number of grade A
planks and grade B planks. For the product-grade reference,
63 planks were removed from the baseline training set, and
the remaining 188 planks consisted of 94 planks of each
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Figure 2. The observed-predicted plot of the baseline training data, using the model trained on the baseline training data with the product-grade reference. The
upper observations (1) represents grade A, and the lower (0) represents grade B. The y-axis shows the grade of each plank as the actual binary grade, and the x-axis
shows the continuous grade predicted by the model. The encircled observations have a weak correlation between their measured features and their assigned grade,
i.e. an observation in the bottom right looks to the model as, and would have been predicted as, a plank of grade A (1) while the product-grade was grade B (0).
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Table 2. Misclassification tables for the three training scenarios: baseline, class-overlap, and class-balance.

(a) Baseline training scenario

Predicted by Grading Predicted by Grading
product-trained accuracy image-trained accuracy
Q| Grade A B A B
s A 314 72 81% 313 73 81%
8 B 73 136 65% 72 137 66%
Ol Total 76% 76%
(b) Class-overlap training scenario
Predicted by Grading Predicted by Grading
product-trained accuracy image-trained accuracy
Q| Grade A B A B
% A 302 84 78% 314 72 81%
8 B 84 125 60% 73 136 65%
Ol Total 72% 76%
(c) Class-balance training scenario
Predicted by Grading Predicted by Grading
product-trained accuracy image-trained accuracy
g| Grade A B A B
g A 310 76 80% 307 79 80%
8 B 77 132 63% 78 131 63%
Ol Total 74% 74%

Note: Each sub-table presents the grading results of the two models trained on the product-grade refer-
ence (product-trained) and image-grade reference (image-trained) for that training scenario. The test
set contained 386 planks of grade A and 209 planks of grade B.

grade. For the image-grade reference, 87 planks were
removed, and the remaining 164 planks consisted of 82
planks of each grade.

3. Results

To investigate the effect of the class-balance and class-overlap
aspects of training data on the grading outcome relative to a
baseline training scenario, using two different reference
grades for training, six multivariate PLS-DA models were
trained. The grading outcome of the same test set of each
of the six models is shown in Table 2.

For further comparison of the grading outcome for
different training scenarios, the grading agreement between
the different models, i.e. the proportion of individual planks
in the test set that was graded the same by two models, is pre-
sented in Table 3.

4, Discussion

The baseline training scenario (Table 2(a)) showed that the
product-grade reference and image-grade reference resulted

Table 3. Grading agreement of all models, showing the proportion of the test
set graded identically by two models measured in percent (%). The headers
show the training scenario and the two corresponding models of that
scenario, trained on the reference product-grade (P) and image-grade (I),
respectively.

Class- Class-
Baseline overlap balance

Scenario Reference P | P | P |
baseline P 100

| 88 100
Class-overlap P 93 86 100

| 88 96 85 100
Class-balance P 95 87 94 87 100

|

87 92 85 93 87 100

in the same grading accuracy, i.e. 76%. The two baseline
models predicted the test set with an 88% agreement
(Table 3). No qualitative investigation was made to investigate
if any systematic difference could be detected. The reason for
the higher grading accuracy of grade A planks for both
models is partly due to the moderately overrepresented
number of grade A planks in the training set, resulting in a
slightly biased model with a higher grading accuracy for
grade A planks. Furthermore, the higher grading accuracy of
grade A planks can be attributed to the more homogeneous
nature of grade A planks, as they are specifically graded for
a wall panelling product for which a homogeneous knot-
pattern is preferred, whereas grade B planks are much more
heterogeneous in their knot-pattern. The similar total
grading accuracy is strong evidence that a grading model
using an image-based grading reference for training would
perform as good as a model trained on the product-grade
reference — which is much more tedious and costly to
acquire due to having to process the training data into a
finished product before reference grading.

The class-overlap training scenario (Table 2(b)), where train-
ing observations were removed to increase the separation
between the classes showed that the model trained on an
image-grade reference retained a grading accuracy of 76%,
and 96% of the test set was predicted identically as the corre-
sponding baseline model (Table 3). This result implies that the
64 ‘not-clearly’ labelled observations in Table 1 that was
removed contributed very little to the model. For future
studies using a similar image-grade reference this shows that
if a quality-expert is not sure about the desirability of a
specific plank, that plank might as well be removed from the
experiment entirely, as it will probably not contribute much
to a grading model. Future studies might also want to design
the image-grading process in such a way that large quantities
of distinct grade A and grade B planks can be processed
efficiently, e.g. using images of automatically pre-sorted planks.
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The model trained on the product-grade reference in the
class-overlap training scenario surprisingly suffered a loss of
4% points of total grading accuracy, as the 64 observations
that were removed, shown in Figure 2, were considered to
be directly misleading during the training of the model.
However, it is reasonable to assume that the objective
nature of the product-grade reference contributes more to
the grading performance of the model, however weak, than
the observation labelled ‘not-clearly’ did for the image-
grade reference trained model. Hence the results indicate
that the more objective product-grading reference does not
benefit from a smaller class-overlap at the cost of removing
observations for training - at least not for this data set.

For the class-balance training scenario, both models per-
formed again very similarly in terms of grading performance
(Table 2), and 87% of the test set observations were predicted
the same by both models (Table 3). Both models had a total
grading accuracy of 74%, down from 76%. These results
show that the performance of the baseline models is not hin-
dered by an over-representation of grade A planks in the
training set and that removing observations to achieve a
class-balanced training set lowers the grading accuracy of
the model in this study. The lower grading accuracy is
assumed to be because of the smaller training set. Ideally,
the training set should consist of an equal number of obser-
vations from each grade to remove any bias introduced
when training on a class-imbalanced training set. However,
due to the natural distribution of grade A and grade B obser-
vations found in the raw-material (2:1 ratio), and since remov-
ing grade A observations to achieve a class-balanced training
set reduced the grading accuracy, the remaining alternative is
to generate more observations of grade B artificially. However,
due to the way the aggregated knot-feature variables were
created, and due to their large number, using re-sampling
techniques, like the SMOTE algorithm (Chawla et al. 2002),
was considered to be unsuitable for this study. Future
studies could instead try to simulate sawn timber from
which the aggregated variables were created.

Overrepresentation of a class in a training set leads typi-
cally to a bias in the model that predicts the overrepresented
class member more often than the underrepresented class
(seen in the results in this study and in Olofsson et al.
(2019b, 2019¢, 2019a)). However, in the context of dry-
sorting sawn timber, this is sometimes desirable since the
unbalanced nature of the training set is usually reoccurring
in the test set. Another reason for the lower grading accuracy
of grade B planks than grade A planks is their more hetero-
geneous knot-pattern. Furthermore, the problem of class-
balance was determined to be moderate in this study and
the related cited works. In this study, the entire data available
had roughly a 2:1 ratio of grade A planks to grade B planks
according to the product-grade, in comparison to, eg.
medical studies dealing with cancer patients of a population
with a vastly disproportionate number of healthy and sick
subjects. For futures studies, these results show that the
class-imbalance problem can be solved by changing the
class-separating threshold, rather than sacrificing grading
accuracy by removing training observation to achieve a
class-balanced training set.

5. Conclusions

When training a PLS model for automatic grading of kiln-dried
sawn timber for a customer’s product, this study indicates that
when using the objective product-grade reference, i.e. the
product grade outcome of each piece of sawn timber, training
on all available data will give the highest grading accuracy
(76% correctly graded pieces of sawn timber). Removing
observations from the training set to achieve a training set
with less class-overlap, or a class-balanced training set, did
not improve the grading accuracy (72% and 74%, respect-
ively). When using the subjective image-grade reference for
training, i.e. the grade given by the customer to images of
each piece of sawn timber, removing training data to
achieve a class-balanced training set did not improve the
grading accuracy (74%). The results regarding class-balance
indicate that the common problem of training machine-learn-
ing models on a class-imbalanced training set does not seem
to be a problem in the context of dry-sorting sawn timber, as
the class-imbalance of such data sets is only moderate, i.e.
roughly 2:1 in this study.

Using the image-grade reference, training on all data
achieved the same grading accuracy (76%) as the corre-
sponding model trained with the product-grade reference.
This shows that a product-adapted grading model could
be trained using images extracted from the dry-sorting
station of a sawmill, instead of having to process the train-
ing data into a split, milled, and planed product. Removing
observations of the image-grade reference data, for which
the customer had difficulty in determining the grade, in
reducing the class-overlap retained the grading accuracy
(76%). This retention in grading accuracy showed that
there are benefits to be had with a more carefully structured
image-grading procedure, as the removed training data had
a net-zero effect on grading accuracy, i.e. a waste of time for
the customer.
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ABSTRACT

Computed tomography (CT) scanning of logs allows for the appearance grading
of virtual sawn timber before sawing the log. This study compares an existing
rule-based approach with two partial least squares (PLS) regression machine-
learning models when grading and deciding to dedicate virtual sawn timber for
a specific customer’s product or not. The data consisted of a 3D reproduction
of the knot structure within each of the 156 CT scanned logs projected onto the
surfaces of the virtual sawn timber. The virtual sawn timber’s knot structure
was graded as suitable for the intended customer or not suitable by the existing
rule-based approach, and the log’s position was optimised to maximise the yield
of such sawn timber. Once the sawing was decided, the virtual sawn timber’s
knot structure was used to create a large set of descriptive statistical variables
used by two machine learning models. The PLS models were trained on either of
two quality references; the finished product grade, i.e. the quality grade of a wall
panelling product produced by the customer, or the image-grade based on images
of the sawn timber, extracted from the dry-sorting station’s automatic grading
system and graded by two experienced researchers. The results show that the two
PLS models perform equally well at allocating suitable virtual sawn timber to
the customer, indicating that the quality references are equally useful for training
a PLS model. The PLS models delivered 93% of the dried sawn timber to the
customer, leaving very little sawn timber with customer-specific properties at
the sawmill, with 89% and 90% of the delivered material passing the intended
product quality demands. The rule-based approach delivered 85% dried sawn
timber with a 73% pass rate.

KEYWORDS
Sawn timber, CT, Machine Learning, PLS

1. Introduction

X-ray computed tomography (CT) scanning of logs before sawing allows for the earliest possible
decision making in the sawmill process. CT-scanning a log gives information of the log’s internal
knot structure, which is the main feature to consider when grading sawn timber. Virtual sawn
timber is fitted inside the CT scanned virtual representation of the log such that the knot
structure on the surfaces and within the virtual sawn timber can be measured. The virtual sawn
timber can then be graded according to some grading criteria. Once graded, each virtual piece
of sawn timber can be dedicated to a specific customer, the intended main product (Sandberg
and Teischinger, 2021), and the log can then be sawn. Based on virtual grading, the sawmill
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can also plan the drying of the sawn timber to fulfil customer demands. One advantage of such
planning is that sawn timber of the same dimension but with different drying requirements can
be separated before drying and the traditional dry-sorting grading procedure. By performing
the quality grading early in the production process, any subsequent grading can be used as a
complementary grading process, if at all necessary. Such subsequent grading may be necessary,
depending on the intended customer, to detect rotten or dead knots if they are filled with resin
as CT scanning struggle to detect the small density variations for such features.

Appearance grading of sawn timber is usually performed using a rule-based approach. Rules
(limits) are enforced such that, e.g. the knot structure of the sawn timber abide by standardised
quality grades, such as the Nordic Timber Grading Rules (NTGR — Swedish Sawmill Managers
Association (1994)). The sawmill participating in this study has two rule-based sawn timber
grading systems; a CT-based system that optimises the log’s positioning before sawing, and a
camera-based system that performs the final grading at the dry-sorting station. Both systems
implement the NTGR or, if needed, some customer adapted grading rules. Lycken and Oja
(2006) argued that the NTGR rules are troublesome to customise for individual customers with
special requirements. In particular, the difficulty in having the customer describe their subjective
quality criteria of the entire face of the sawn timber in a way that can be described by a set of
rules governing individual features was mentioned. Olofsson et al. (2019b) showed that a partial
least squares regression (or projection to latent structures, PLS (Geladi and Kowalski, 1986;
Wold et al., 2001)) model could, with benefits, replace the rule-based grading for a product-
specific grading. In particular, only requiring the final product grade as input from the customer
was mentioned. The benefits of PLS-based grading over rule-based grading suggested by Lycken
and Oja (2006) and Olofsson et al. (2019b) could be summarised as the PLS grading model
captures the customer’s subjective and holistic grading criteria, which is difficult to describe
using a rule-based approach.

One problem with using a machine learning approach for product or customer adapted
grading is acquiring data to train and test the grading model. The data needs to consist of
measured features, X, and a reference-grade, Y, of the sawn timber which the machine learning
method can model, in this study by multivariate linear regression, PLS. To achieve a robust
grading model, the data needs to represent all possible incoming data, i.e. it needs to include
sawn timber resulting in both a good and a poor quality reference. In this study, acquiring such
data requires tracking of each piece of sawn timber through the entire refinement process; from
the point of being a virtual piece of sawn timber scanned by the CT scanner before sawing to the
point of being a finished wall panel at the customer’s final quality control. Such data collection
is usually a troublesome and costly logistical process. Olofsson et al. (2021) showed that it
is possible to acquire equally useful data for product-adapted dry-sorting in an easier way by
having the customer grade images of the sawn timber as the basis for the quality grade reference.
Based on images of the sawn timber, the customer can guess the product grade resulting from
each piece of sawn timber with high certainty. The benefits of using images of the sawn timber
as the basis for the quality grade reference is: that the images are easily acquired at the sawmill
from a camera-based automatic grading system at the dry-sorting station; the images are easily
delivered to the customer and graded by a human subjectively and holistically; the images
are not customer-specific, only specie and dimension specific and can therefore be reused for
different customers of that specie and dimension; the use of images as the basis for the quality
reference greatly simplifies the data collection process as no material needs to be delivered and
processed by the customer; (Olofsson et al., 2019a) showed the possibility to perform this data
collection in future studies using a traceability algorithm to match sawn timber scanned by the
CT scanner with the same sawn timber scanned by the camera-based automatic grading system
at the dry-sorting station.

The purpose of the study was to investigate if it is possible to use a machine-learning PLS
model to appearance grade virtual sawn timber inside a log before the log is sawn. A goal was
to be able to use images of sawn timber to create a reference grade for the machine-learning
system.



2. Material and methods

2.1. The material

The material investigated consists of 303 centre yield pieces, with a cross-section dimension of
50 x 150 mm, of sawn timber taken from 156 Scots pine (Pinus sylvestris L.) logs (9 pieces were
lost or destroyed), between 3.6 m and 5.4 m in length, and dried to 14% moisture content. Two
pieces of centre yield were sawn from each log.

2.2. The Method

An overview of the study is shown in Figure 1 — letters (A-J) throughout this paper refers to
this figure. This study was performed at Sdvar Sawmill (”the sawmill”), where log data from
the on-site CT scanner (B) and sawn-timber data from the camera-based dry-sorting system
(H), was collected. The sawn timber was then processed into wall panels at Lundgren’s Planing
Mill ("the customer”), where the quality grade of each piece of sawn timber (J) was determined
based on the produced wall panels’ quality grade.

All the 303 pieces of sawn timber were tracked from the virtual sawn timber from the CT-
scanning of the log, the sawing and drying, the optical scanning in the dry-sorting station, the
refinement process at the customer, and to the final quality-grading station at the customer. The
data collected was used to train two PLS grading models using two different reference grades.
Using 5-fold cross-validation, the 303 pieces of sawn timber were simulated to pass through the
refinement process again as an independent test set. The summed results of all 5 tests were
presented to compare the sorting performance of a rule-based approach and the two PLS-based
models.

During the simulated sorting, the grading steps used in this study had the option to
classify the sawn timber as the main product or not. The main product was dedicated to the
customer and continues to the next step of the refinement process. The CT-scanning system
can perform grading of virtual sawn timber before sawing the log. If the virtual sawn timber
was deemed unsuitable for the customer, the CT-scanning system could decide to saw the log
into a different main product for a different customer during the simulated sorting. The dried
sawn timber deemed unsuitable for the customer is graded as a consequence product (Sandberg
and Teischinger, 2021) and is not delivered to the customer during the simulated sorting.

Using either rule-based grading or PLS-based grading, the CT-scanning system is the main
grading step in this study. The grading performed by the CT-scanning system is complemented
by two steps, one before sawing (E) and one after drying (I), to remove outliers. The
complementary steps are the same for both the rule-based approach and the PLS models.

2.3. Data Collection

The industrial customer Lundgren’s Planing Mill aims to produce a specific wall panelling
product. The sawn timber delivered to Lundgren’s Planing Mill for this product is from Sévar
Sawmill, and three wall panels are made from one piece of sawn timber by splitting and milling
(K). The wall panels are manually graded as either the desirable grade A or the undesirable
grade B. Each piece of sawn timber was given an A or B product-grade Y, (J) as the majority
wall panel grade produced from that piece of sawn timber. Both the wall panels and sawn
timber share the A or B quality grade label, but as this study only deals with the grading of
sawn timber, only the A or B grade of the sawn timber was used. This wall panelling product
is sensitive to dead knots as they tend to crack or fall out, and sound knots can crack during
splitting and milling.

The sawn timber delivered from the sawmill was scanned using a Boardmaster dry-sorting
system (Anon., 2018) that uses cameras to measure externally visible features to describe the
sawn timber in a way that a computer can automatically grade. Images of the sawn timber
(Figure 2 was extracted from the Boardmaster and two experienced researchers graded the
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Figure 1. Material flow chart. 1, data collection of the entire dataset through the entire refinement
process. 2, simulated sorting comparing the sorting outcome of the rule-based approach with the PLS-
based approaches. A, the 156 logs selected for this study. B, CT-scanning all the logs performed by the
CT Log. C, the rule-based approach optimising and deciding the sawing. (Dy) and (D2), two PLS models
correlating variables (X) from the CT-scanning and the product-grade Yp, or image-grade (Yj), quality
references, respectively. C and D can classify the virtual sawn timber as the main product intended for
the wall panelling customer or, if not suitable for this customer, as a different main product for a different
customer. E, additional rules applied to C and D to remove outliers. F, sawing the log. G, kiln drying
the sawn timber. H, the Boardmaster at the dry-sorting station capturing images of the sawn material
whose image-grade is used as a quality reference for (D2). I, additional rules applied to remove outliers.
J, a piece of sawn timber delivered to the customer receiving a quality product-grade (Yp) based on; K,
split, milled, and quality graded by the customer triplet of wall panels.

images as suitable for the customer or not. This image-grade Y; (H) classifies the dried sawn
timber as the main product (suitable for Lundgren’s Planing Mill) or as a consequence product
(not suitable for Lundgren’s Planing Mill) which, for easy comparison with the product-grade,
will also have the label A or B, respectively.

The sawmill sorts the incoming logs as suitable for this customer based on external
measurements such as top-log diameter. After that, the on-site CT-scanning system (B), called
CT Log (Ursella et al., 2018), by Microtec, scans the logs. CT scanning of the logs before sawing
allows for 3D measuring of internal features, most importantly knots. The CT Log transforms
the 3D knot data into a 2D knot structure on the surfaces of the virtual sawn timber. A large
set of variables X were created based on the 2D knot structure. Also, some log characteristics
were included in the set of variables, e.g. pith deviation from a centre line.

Figure 2. Example of images used for image-based grading. All four faces of the sawn timber are shown.

2.8.1. Variable set created using the C'T Log

A large set of variables were calculated based on the CT data, and a few specific
measurements were used from the camera-based measurements of the Boardmaster. The CT-
based variables X were used for PLS modelling (D), and the measurements used in the
Boardmaster were used to create a few rules to remove outliers (I). The full X variable set,
consisting of approximately 1800 variables, is similar in structure and scope to the set detailed
in Olofsson et al. (2019b), but was based on the CT Log measurements described below.



The CT Log measured the scanned log’s knots, geometric measurements, heartwood content,
heartwood density, sapwood density, log spiral grain, and log pith deviation from a centre line.
The CT Log describes each knot with a few different measurements and classes regarding shape,
size, and sound or dead status. The measured knots were projected onto the surface of the
virtual pieces of sawn timber as the CT Log had intended the sawing. The 2D knot structure
described by a large set of various statistical measurements repeated in several sections of the
sawn timber and on all the sawn timber faces. The log specific features, together with the 2D
knot measurements’ calculated variables, were used to calculate the X variables for each piece
of virtual sawn timber.

Once the data was stored and the X variables were calculated, the log was sawn into sawn
timber based on the instructions of the CT Log. Due to a shortcoming of the data collection,
the data did not capture any inaccuracies, such as positioning or rotational errors, of the sawing
process. Due to these errors, the variables based on the CT Log’s knot description occasionally
does not fully correlate with the material and, by extension, the grades associated with that
piece. As such sawing errors are typically quite small, the effect of these errors is estimated to
be small but does, however, introduce more noise in the data. Occasionally, a large rotational
error, for example, would result in a piece of sawn timber that is not represented well in the
CT Log data.

2.4. The Machine Learning Method - PLS

PLS is a simple but powerful machine learning method. PLS uses multivariate linear regression
to correlate measured variables of a training dataset X with the grade of the same dataset
Y. The training of the PLS model consists of finding the best weights w; and biases b; for
maximum prediction accuracy on the training dataset of the true grade y by the model § =
bo+wiz1+...+wyxy. For this study, the SIMCA 15 (Anon., 2019) software was used to train
two grading models using the X-ray CT variables X and either of the product grade Y}, or image
grade Y; quality references, respectively. Both models were then used to predict the product
grade Y, of an independent test set. For a detailed description of a very similar implementation
of PLS for product-specific grading in the dry-sorting station, see Olofsson et al. (2019Db).

The PLS model outputs an estimated probability that a piece of sawn timber is of the
higher grade A relative to the trained data. The actual classification is then a check if this
probability passes a certain threshold (called PLS-DA, which is PLS regression implemented for
discriminant analysis), by default 50%. If the probability passes the threshold, the sawn timber
is assumed to be grade A and graded as the main product. To minimise the volume of grade
B sawn timber dried to 14% moisture content, the classification threshold was raised such that
only very likely grade A pieces of sawn timber were dedicated to the wall panel customer as the
main product.

2.5. Sorting Procedure

Following the data collection and training of the two PLS models (D) and (D), a simulated
sorting of the entire dataset was performed. Three independent simulated sortings were
performed, one for the rule-based grading (C) and one for each of the (D7) and (D3) PLS
models. The simulated sorting was performed using 5-fold cross-validation where the data set
was split into 5 parts, and each of the parts took turns being the test set while the remaining
4 parts were the training set. The results presented are then the summed results of these 5
tests and will be referred to as the results of the entire dataset. The product grade was always
considered the true grade.

The Scots pine logs selected for this study (A) were passed through the CT Log (B). Based
on the 2D knot structure of the virtual sawn timber, a set of customer-adapted rules (C),
similar in scope to the NTGR, determined the grade of the virtual sawn timber. Based on this
rule-based grade (C), the CT Log optimises and decides the log’s positioning during sawing to



maximise the yield of sawn timber suitable for the customer — the main product. If the CT
Log could not find a way to saw the log to yield sawn timber suitable for the customer, the log
would be sawn into the main product for a different customer, i.e. sawn timber graded as B by
the rule-based method was sawn with a different indented customer.

Once the sawing of the log was decided, the variables X of the virtual sawn timber was
calculated, and the PLS model (D;) or (Dg) predicted the grade of that piece of virtual sawn
timber. Following the PLS-based grade, the complementary set of rules (E) was applied. For a
fair comparison, the same complementary rules (E) was applied to the rule-based grade after
the log had been sawn. The simulated sorting results are presented as if the grading steps were
as shown in Figure 1 where the complementary rules help to optimise the sawing process. To
reiterate, (C) was the only grading process used to optimise the log’s positioning during sawing,.

If the virtual sawn timber grade before sawing was determined to be B, i.e. a consequence
product, that piece of sawn timber may be dedicated to a different customer as a different main
product of the same dimensions. If the virtual sawn-timber grade was determined to be A, the
log was sawn, and the sawn timber was dried to 14%. It was possible to dedicate one of the
two centre yield pieces of sawn timber to Lundgren’s Planing Mill and one piece to another
customer.

Using the camera-based Boardmaster dry-sorting system, another set of 7 complementary
rules was applied at the dry sorting station. These rules graded the dried sawn timber as the
main product or as a consequence product and was the final grading step before delivery to the
customer.

2.5.1. Complementary Rules

One of the drawbacks of the multivariate methods used for this study is that some important
measurements can become too vague in the PLS model. This is not a problem with the number
of variables, as the PLS model is optimised for predictive power and not optimised for the best
regression fit of the X variables and the grade Y. The model is optimised for predictive power
based on a training dataset, which is separate from the testing dataset and therefore not biased.
An example of a vague variable is the measurement of log-pith deviation from a centre line
measured by the CT Log. This measurement is correlated with the sawn-timber grade because
a large deviation in the pith could indicate bark inclusion, which often results in wall panels of
grade B. Still, since a large measurement of pith deviation does not guarantee bark inclusion, the
model can classify the sawn timber as grade A even with a large log pith deviation measurement.
A large pith deviation is considered high-risk, and therefore a rule (limit) for this variable, and
similarly for a few others, were included for all tests in both the CT Log and the Boardmaster.
These measurements are holistic in the sense that they measure e.g. the dead-knot area of the
entire face of the sawn timber.

In the CT Log, 6 rules were enforced in all tests as an upper limit to:

e pith deviation.
e three measurements of the dead-knot area on the sapwood face of the sawn timber, and
e two measurements of the dead-knot area on the edge faces of the sawn timber.

In previous studies by Olofsson et al. (2019b,c,d) and Olofsson et al. (2021), an extensive
variable set was calculated for similar studies regarding product adapted sawn timber grading
using the Boardmaster. In this study, these variables were not needed, and only a very select
few variables were used in the Boardmaster. If no customer-adapted sorting is performed by
the CT Log, a much more strict set of customer-adapted rules is applied by the Boardmaster.
As this study focuses on rule-based vs PLS-based grading in the CT Log, these rules were not
active, and only the complementary rules were used.

The Boardmaster was set up to enforce the following 7 rules in all tests as an upper limit
to:

e dead-knot area on the edges and sapwood face,



e bark-knot size on the pith face and sapwood face,
e bark-inclusion size of the pith face and sapwood face, and
e 10 rotten knots was allowed.

These rules for both systems were the same throughout the study for all tests. The limits
were determined based on the entire dataset as a limit that would discard obviously poor-quality
sawn timber or high-risk pieces. The rule-based grading and the PLS models also failed most
of the sawn timber pieces that any of these rules would have failed.

3. Results

To investigate the possibility of dedicating virtual sawn timber to a specific product before
sawing the log, using X-ray CT-scanning and machine-learning models, a simulated sawmill
refinement process and sorting of 156 logs were investigated. A rule-based approach was
compared with two PLS-based machine-learning models using the product-grade or the image-
grade as quality reference for training, respectively, when performing the grading of the virtual
sawn timber from the CT-scanning data.

The quality distribution of the 303 pieces of sawn timber of this study is shown in Table 1
and is repeated in Tables 2-4 for easy reference. The image grade and the product grade show
a very different proportion of grade A sawn timber of the entire dataset.

Table 1. Material quality grade distribution.

Product-grade Image-grade

Grade A 189 114
Grade B 114 189
Total 303 303
Grade A (%) 62 38

Tables 2-4 show how the material is sorted throughout the sawmill, and each column shows
the quality distribution of the main product dedicated to the customer after that step. Graded
by the CT Log refers to (C+E) in Figure 1, and graded by the Boardmaster refers to (I). The
product-grade A and B rows show the product-grade quality distribution of the main product.
The total count shows the number of pieces delivered from the current step to the next step. The
ratio of delivered sawn timber shows the ratio of the incoming sawn timber from the previous
step that is graded as the main product and is delivered to the next step, which for the all-
sawn-timber column always shows 100% as the entire dataset is delivered to the CT Log. The
ratio of delivered sawn timber of grade A shows the proportion of the main product delivered
to the next step that is of grade A, which for the log intake always show 62% as that is the
proportion of product-grade A sawn timber found in the entire material (Table 1) delivered to
the CT Log.

Table 2. Sorting outcome using the customer adapted rule-based grading in the CT Log and using the
complementary rules in the CT Log and the Boardmaster.

Graded as A by
All sawn timber CT Log Boardmaster

Product-grade A 189 159 153
Product-grade B 114 69 47
Total 303 228 200
Delivered (%) 100 75 88
Delivered grade A (%) 62 70 7



Table 3. Sorting outcome using the product-trained PLS model in the CT Log and using the
complementary rules in the CT Log and the Boardmaster.

Graded as A by
All sawn timber CT Log Boardmaster

Product-grade A 189 102 101
Product-grade B 114 21 13
Total 303 123 114
Delivered (%) 100 41 93
Delivered grade A (%) 62 83 89

Table 4. Sorting outcome using the image-trained PLS model in the CT Log and using the
complementary rules in the CT Log and the Boardmaster.

Graded as A by
All sawn timber CT Log Boardmaster

Product-grade A 189 105 104
Product-grade B 114 19 11
Total 303 124 115
Delivered (%) 100 41 93
Delivered grade A (%) 62 85 90

Table 5. Sorting outcome specific to the complementary rules (E) in the CT Log for the rule-based
grading method and the two PLS-based methods.

Rejected by complementary rules in
Rule-based Product-trained Image-trained

Product-grade A 6 3 5
Product-grade B 22 10 16
Total 28 13 21



The results using the product-trained (Table 3) and image-trained (Table 4) PLS-based CT
Log sortings are very similar, with 41% of the scanned material delivered from the CT Log
to the Boardmaster and both with 93% delivered from the Boardmaster to the customer. The
proportion of grade A sawn timber by the image-trained PLS model managed 2%-points higher
by the CT Log and 1%-point higher by the Boardmaster than the product-trained PLS model.

The rule-based sorting (Table 2) by the CT Log and the Boardmaster delivered 200 pieces
of sawn timber to the customer, while the PLS-based CT Log approaches delivered 114 and
115 pieces of sawn timber, respectively. The higher amount of delivered sawn timber by the
rule-based approach comes with a lower proportion of grade A sawn timber at 77% compared
to 89% and 90%, and a lower delivered amount from the Boardmaster at 88% compared to 93%
when compared to the PLS-based methods.

All of the pieces rejected by the complementary rules shown in Table 5 were considered
obviously poor quality sawn timber or high-risk pieces based on visual inspection. The product-
trained PLS model required less correction by the complementary rules (E) than the other
methods, with only 10 pieces of grade B removed.

4. Discussion

When comparing the overall sorting performance of the current rule-based approach (Table 2)
with the PLS-based sorting results (Tables 3 and 4), it is clear that the PLS-based methods
would deliver sawn timber more in line with the requirements of the customer. The proportion
of grade A sawn timber in the delivered batch from the Boardmaster and the dry-sorting station
is about 90% for the PLS-based methods compared to 77% using the rule-based approach. A
high proportion of grade A sawn timber is very important for the customer as this means the
production process yields a higher proportion of grade A wall panels. Both of the PLS-based
methods also managed to deliver a higher proportion of the material through the complementary
rules in the Boardmaster than the rule-based approach, 93% vs 88%, respectively. Using either
of the PLS-based methods would result in lower proportions of consequence products for the
sawmill. The results for the PLS-based methods could be improved by allowing a PLS model
to control the sawing optimisation instead of having to sort the sawn timber produced by the
rule-based approach. Furthermore, the results could be improved by taking the log’s positioning
errors mentioned in Section 2.3.1 into account.

The higher proportion of grade A sawn timber achieved by the PLS-based methods comes
at the consequence of a lower volume of sawn timber dedicated to the customer. The rule-based
sorting in the CT Log dedicated 228 pieces of sawn timber to the customer during sawing
compared to 123 and 124 pieces of sawn timber by the PLS-based approaches. This means that
a higher amount of logs needs to be sawn using the PLS-based methods to reach the same
delivery quota as the rule-based method. During discussions with the sawmill, it was agreed
that a minimum of about one-third of the material scanned by the CT Log needs to be dedicated
to the customer; otherwise, the drying kilns will not be filled during one working shift. As long
as this requirement is met, the lower number of delivered pieces of sawn timber by a strict
PLS-based approach in the CT Log is not a problem. Since the PLS models use a classification
threshold, the balance of strict sorting vs high volume deliveries is a simple balancing problem
controlled by a single parameter, see Olofsson et al. (2019b) for a more detailed discussion on
this balancing act.

The use of complementary rules (both in the CT Log (E) (Table 5) and the Boardmaster at
the dry-sorting (I) (Tables 2-4)), was deemed necessary as without these rules some obviously
poor quality or high-risk sawn timber would have been graded as the main product and delivered
to the customer. For the rule-based case, the need for complementary rules indicates how difficult
rule-based appearance grading of sawn timber for this customer is. The difficulty comes from the
fact that the rules used in (C) are on a per-feature basis, i.e. each knot is evaluated separately,
which is one of the problems of customising rules for individual customers according to Lycken
and Oja (2006) and Olofsson et al. (2019b). The complementary rules used in (E) use holistic



variables, which is more suitable for this customer. The complementary rules are also necessary
for the PLS-based methods. This could be due to the limited size of the dataset used in this
study and that some of the important variables are difficult to model by linear regression. For
example, the most important log feature apart from knots was the log pith deviation. A high
value of log pith deviation can indicate top breakage and, therefore, a high risk of bark inclusion.
Bark inclusion is almost guaranteed to result in grade B sawn timber. However, since a high
value of log pith deviation does not guarantee bark inclusion, the variable is difficult to model
by PLS.

One problem with using both the CT Log and the Boardmaster to grade the sawn timber
is the possibility to introduce a disagreement between the two systems, as discussed in more
detail by Olofsson et al. (2019a). A disagreement could result in sawn timber being dried to 14%
and not be delivered to the customer, resulting in consequence products for the sawmill; while
an agreement between the CT Log and the Boardmaster would mean that only sawn timber
suitable for the customer would be dried 14% and delivered to the customer.

The similar sorting performance by the product-grade trained model (Table 3) and the
image-grade trained model (Table 4) shows that an image-based reference for the PLS model
training is at least as good as using the product-grade reference. This equivalence of reference
grades was previously found for product-adapted dry-sorting by Olofsson et al. (2021). As the
image-grade reference is much easier to acquire than the product-grade reference, the difficulty
of gathering data for similar machine learning studies could potentially be drastically lower.
The product grade and image grade were quite different (Table 1). The image grade determined
by the two researchers was much stricter than the actual product grade. However, using a
classification threshold (Olofsson et al., 2019b) allows for simple control over this bias with a
single parameter. During discussions with the customer, the customer has stated that there
are various subjective appearances within the grade A wall panel class and that acceptable and
desirable are not always the same thing. This could explain the difference of opinion between the
researchers and the product-grade — the researchers might have classified the images as desirable
or not while the product-grade indicates acceptable or not. Another difficulty with using the
sawn timber images as a reference is splitting the sawn timber into three panels, effectively
leaving one wall panel hidden inside the piece. It is challenging to estimate how surface defects
affect this hidden wall panel in the middle of the piece. The researchers were possibly overly
cautious regarding such surface defects. The high proportion of grade A sawn timber delivered
from the CT Log using the image-trained PLS model shows that even if subjective grading
of the material is a bit ambiguous, and due to the splitting even incomplete, calibrating the
classification threshold results in a sorting outcome on-par with the product-trained PLS model.

An important implication of the usefulness of images of sawn timber as a quality reference is
their reusability. A database of sawn timber images could be used to create an appearance quality
reference for many different customers independent of their drying requirements. The quality
reference could be used to train individual machine learning models per customer, similarly
to the image-trained PLS model used in this study. This could result in several models giving
suggestions on how to saw a log after CT scanning. The sawmill can select the sawing pattern
to be used based on material availability (supply), delivery requirements (demand), and price.
Based on the 93% delivered material from the Boardmaster for the PLS-based methods, it seems
plausible to only perform one appearance grading in the CT Log. Removing the dry-sorting
entirely would for the image-trained PLS model mean that the CT Log column in Table 4
would be delivered directly to the customer after drying. The customer would then receive 83%
grade A sawn timber in the delivery, which is still higher than the rule-based approach including
the dry-sorting at 77% (Table 2).

Future studies should investigate a better way of handling rare but obviously poor quality
or high-risk sawn timber. Their rarity makes them difficult to model by a machine learning
method, and the use of complementary rules, as in this study, is a product-specific solution.
Removing such high-risk pieces before sawing using CT-scanning could make it possible to skip
the dry-sorting entirely.

Future studies should also investigate the possibility to simulate the splitting process by
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splitting the virtual sawn timber pieces into approximate wall panels to see if this would improve
the grading results, thereby further utilising the 3D data available from the CT Log.

5. Conclusions

This study shows that a machine learning method (PLS) can be used to appearance grade sawn
timber for a specific product before sawing using X-ray CT scanning and thereby plan the entire
refinement process from the CT scanning of the log to the finished product. Furthermore, this
machine learning approach’s product-adapted aspect can be implemented without meticulous
logistics and material processing to create a training dataset. The results show that a PLS
model trained using images of the sawn timber acquired from the sawmill’s dry-sorting station
as the quality reference is as good as, or even slightly outperforms, an otherwise identical
implementation using the finished product grade as training reference. The benefits of using a
machine learning method trained using images as a reference are the simplicity of capturing
the subjective and holistic quality requirements of a customer. This study indicates the future
possibility for an image data bank of sawn timber being used by several customers to make
product-specific quality references for the training of machine learning models. Such models
could enable product-specific sawing and drying and possibly remove the need for dry-sorting
for some customers.
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